-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathfe_util.py
214 lines (175 loc) · 6.74 KB
/
fe_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
from sklearn.decomposition import TruncatedSVD
from const import FeatureType, AGGREGATE_TYPE
def left_merge(data1, data2, on):
"""
merge util for dataframe
"""
if type(on) != list:
on = [on]
if (set(on) & set(data2.columns)) != set(on):
data2_temp = data2.reset_index()
else:
data2_temp = data2.copy()
columns = [f for f in data2.columns if f not in on]
result = data1.merge(data2_temp, on = on, how='left')
result = result[columns]
return result
def concat(L):
"""
tools for concat some dataframes into a new dataframe.
"""
result = None
for l in L:
if l is None:
continue
if result is None:
result = l
else:
result[l.columns.tolist()] = l
return result
def name2feature(df, feature_space, target_name='label'):
assert isinstance(feature_space, list)
for key in feature_space:
temp = key.split('_')
assert len(temp) > 1
op_name = temp[0]
if len(temp) == 2:
i = temp[1]
command = op_name + '(df, i)'
elif len(temp) == 3:
i, j = temp[1], temp[2]
command = op_name + '(df, [i, j])'
elif len(temp) == 4:
stat, i, j = temp[1], temp[2], temp[3]
command = op_name + '(df, i, j, [stat])'
else:
raise RuntimeError('Do not support this OP: ' + str(key))
df = eval(command)
return df
def count(df, col):
"""
tools for count encode
"""
df['count_{}'.format(col)] = df.groupby(col)[col].transform('count')
return df
def crosscount(df, col_list):
"""
tools for multy thread bi_count
"""
assert isinstance(col_list, list)
assert len(col_list) >= 2
name = "count_"+ '_'.join(col_list)
df[name] = df.groupby(col_list)[col_list[0]].transform('count')
return df
def aggregate(df, num_col, col, stat_list = AGGREGATE_TYPE):
agg_dict = {}
for i in stat_list:
agg_dict['AGG_{}_{}_{}'.format(i, num_col, col)] = i
agg_result = df.groupby([col])[num_col].agg(agg_dict)
r = left_merge(df, agg_result, on = [col])
df = concat([df, r])
return df
def nunique(df, id_col, col):
"""
get id group_by(id) nunique
"""
agg_dict = {}
agg_dict['NUNIQUE_{}_{}'.format(id_col, col)] = 'nunique'
agg_result = df.groupby([col])[id_col].agg(agg_dict)
r = left_merge(df, agg_result, on = [col])
df = concat([df, r])
return df
def histstat(df, id_col, col, stat_list = AGGREGATE_TYPE):
"""
get id group_by(id) histgram statitics
"""
agg_dict = {}
for i in stat_list:
agg_dict['HISTSTAT_{}_{}_{}'.format(i, id_col, col)] = i
df['temp_count'] = df.groupby(id_col)[id_col].transform('count')
agg_result = df.groupby([col])['temp_count'].agg(agg_dict)
r = left_merge(df, agg_result, on = [col])
df = concat([df, r])
del df['temp_count']
return df
def base_embedding(x, model, size):
"""
embedding helper for bagofwords
"""
vec = np.zeros(size)
x = [item for item in x if model.wv.__contains__(item)]
for item in x:
vec += model.wv[str(item)]
if len(x) == 0:
return vec
else:
return vec / len(x)
def embedding(df, col):
"""
This is the tool for multi-categories embedding encode.
embedding for one single multi-categories column.
"""
from gensim.models.word2vec import Word2Vec
input_ = df[col].fillna('NA').apply(lambda x: str(x).split(' '))
model = Word2Vec(input_, size=12, min_count=2, iter=5, window=5, workers=4)
data_vec = []
for row in input_:
data_vec.append(base_embedding(row, model, size=12))
svdT = TruncatedSVD(n_components=6)
data_vec = svdT.fit_transform(data_vec)
column_names = []
for i in range(6):
column_names.append('embedding_{}_{}'.format(col, i))
data_vec = pd.DataFrame(data_vec, columns=column_names)
df = pd.concat([df, data_vec], axis=1)
return df
def add_noise(series, noise_level):
"""
target encoding smooth
"""
return series * (1 + noise_level * np.random.randn(len(series)))
def add_smooth(series, p, a = 1):
"""
target encoding smooth
"""
return (series.sum() + p / series.count() + a)
def target(df, col, target_name='label'):
"""
target encoding using 5 k-fold with smooth
target_name : surpvised learning task pred target name, y.
"""
df[col] = df[col].fillna('-9999999')
mean_of_target = df[target_name].mean()
kf = KFold(n_splits = 5, shuffle = True, random_state=2019)
col_mean_name = "target_{}".format(col)
X = df[df[target_name].isnull() == False].reset_index(drop=True)
X_te = df[df[target_name].isnull()].reset_index(drop=True)
X.loc[:, col_mean_name] = np.nan
for tr_ind, val_ind in kf.split(X):
X_tr, X_val = X.iloc[tr_ind], X.iloc[val_ind]
X.loc[df.index[val_ind], col_mean_name] = X_val[col].map(X_tr.groupby(col)[target_name].apply(lambda x: add_smooth(x, 0.5, 1)))
tr_agg = X[[col, target_name]].groupby([col])[target_name].apply(lambda x: add_smooth(x, 0.5, 1)).reset_index()
tr_agg.columns = [col, col_mean_name]
X_te = X_te.merge(tr_agg, on = [col], how = 'left')
_s = np.array(pd.concat([X[col_mean_name], X_te[col_mean_name]]).fillna(mean_of_target))
df[col_mean_name] = _s
return df