Skip to content

Latest commit

 

History

History
594 lines (412 loc) · 14.7 KB

solidity.md

File metadata and controls

594 lines (412 loc) · 14.7 KB

Solidity is an object-oriented, high-level language for implementing smart contracts. Smart contracts are programs which govern the behaviour of accounts within the Ethereum state.

Basic Contract using Solidity

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.9.0;

contract SimpleStorage {
    uint storedData;

    function set(uint x) public {
        storedData = x;
    }

    function get() public view returns (uint) {
        return storedData;
    }
}

Pragma

pragma solidity ^{version};
pragma solidity ^0.4.25;

Import Files

import "filename";

import * as symbolName from "filename"; or import "filename" as symbolName;

import {symbol1 as alias, symbol2} from "filename";

Data Types

type [public] [constant] name; uint public amount; delete amount; - deletes variable content

Getters are automatically generated for public vars. constant vars have to be initialized on declaration.

Boolean

bool : true or false

Operators:

  • Logical : ! (logical negation), && (AND), || (OR)
  • Comparisons : == (equality), != (inequality)

Integer

Unsigned : uint8 | uint16 | uint32 | uint64 | uint128 | uint256(uint)

Signed : int8 | int16 | int32 | int64 | int128 | int256(int)

Operators:

  • Comparisons: <=, <, ==, !=, >= and >
  • Bit operators: &, |, ^ (bitwise exclusive or) and ~ (bitwise negation)
  • Arithmetic operators: +, -, unary -, unary +, *, /, %, ** (exponentiation), << (left shift) and >> (right shift)

Address

address: Holds an Ethereum address (20 byte value). address payable : Same as address, but includes additional methods transfer and send

Operators:

  • Comparisons: <=, <, ==, !=, >= and >

Methods:

balance

  • <address>.balance (uint256): balance of the Address in Wei

transfer and send

  • <address>.transfer(uint256 amount): send given amount of Wei to Address, throws on failure
  • <address>.send(uint256 amount) returns (bool): send given amount of Wei to Address, returns false on failure

call

  • <address>.call(...) returns (bool): issue low-level CALL, returns false on failure

delegatecall

  • <address>.delegatecall(...) returns (bool): issue low-level DELEGATECALL, returns false on failure.

callcode

  • <address>.callcode(...) returns (bool): issue low-level CALLCODE, returns false on failure

Control Structures

Most of the control structures from JavaScript are available in Solidity except for switch and goto.

  • if else
  • while
  • do
  • for
  • break
  • continue
  • return
  • ? :

Flow Control

if (condition) { ... }; if (condition) { ... } else { ... }; for (declaration; condition; expression) { ... };

while (condition) { ... }; do { ... } while (condition); condition ? expression : expression;

continue, break and return can be used to influence flow.

Array

Arrays can be dynamic or have a fixed size.

uint[] dynamicSizeArray;

uint[7] fixedSizeArray;

myArray[3]; - get element myArray[3] = 8; - set element uint[] memory myArray = new uint[](5);

memory array with size determined at runtime. Memory arrays can't have dynamic size

Fixed byte arrays

bytes1(byte), bytes2, bytes3, ..., bytes32.

Operators:

Comparisons: <=, <, ==, !=, >=, > (evaluate to bool) Bit operators: &, |, ^ (bitwise exclusive or), ~ (bitwise negation), << (left shift), >> (right shift) Index access: If x is of type bytesI, then x[k] for 0 <= k < I returns the k th byte (read-only).

Members

  • .length : read-only

Dynamic byte arrays

bytes: Dynamically-sized byte array. It is similar to byte[], but it is packed tightly in calldata. Not a value-type!

string: Dynamically-sized UTF-8-encoded string. It is equal to bytes but does not allow length or index access. Not a value-type!

Enum

Enum works just like in every other language.

enum ActionChoices { 
  GoLeft, 
  GoRight, 
  GoStraight, 
  SitStill 
}

ActionChoices choice = ActionChoices.GoStraight;

Struct

New types can be declared using struct.

struct Funder {
    address addr;
    uint amount;
}

Funder funders;

Mapping

Declared as mapping(_KeyType => _ValueType)

Mappings can be seen as hash tables which are virtually initialized such that every possible key exists and is mapped to a value.

key can be almost any type except for a mapping, a dynamically sized array, a contract, an enum, or a struct. value can actually be any type, including mappings.

All possible mapping keys always exists and have a default byte value of all zeroes. Can't be iterated, checked for length, retrieve which keys were set etc. Also can't be created in memory.


Functions

Structure

function (<parameter types>) {internal|external|public|private} [pure|constant|view|payable] [returns (<return types>)]

Access modifiers

  • public - Accessible from this contract, inherited contracts and externally
  • private - Accessible only from this contract
  • internal - Accessible only from this contract and contracts inheriting from it
  • external - Cannot be accessed internally, only externally. Recommended to reduce gas. Access internally with this.f.

Parameters

Input parameters

Parameters are declared just like variables and are memory variables.

function f(uint _a, uint _b) {}

Output parameters

Output parameters are declared after the returns keyword

function f(uint _a, uint _b) returns (uint _sum) {
   _sum = _a + _b;
}

Output can also be specified using return statement. In that case, we can omit parameter name returns (uint).

Multiple return types are possible with return (v0, v1, ..., vn).

Constructor

Function that is executed during contract deployment. Defined using the constructor keyword.

contract C {
   address owner;
   uint status;
   constructor(uint _status) {
       owner = msg.sender;
       status = _status;
   }
}

Function Calls

Internal Function Calls

Functions of the current contract can be called directly (internally - via jumps) and also recursively

contract C {
    function funA() returns (uint) { 
       return 5; 
    }
    
    function FunB(uint _a) returns (uint ret) { 
       return funA() + _a; 
    }
}

External Function Calls

this.g(8); and c.g(2); (where c is a contract instance) are also valid function calls, but, the function will be called “externally”, via a message call.

.gas() and .value() can also be used with external function calls.

Named Calls

Function call arguments can also be given by name in any order as below.

function f(uint a, uint b) {  }

function g() {
    f({b: 1, a: 2});
}

Unnamed function parameters

Parameters will be present on the stack, but are not accessible.

function f(uint a, uint) returns (uint) {
    return a;
}

Function Modifier

Modifiers can automatically check a condition prior to executing the function.

modifier onlyOwner {
    require(msg.sender == owner);
    _;
}

function close() onlyOwner {
    selfdestruct(owner);
}

Function type

Pass function as a parameter to another function. Similar to callbacks and delegates

pragma solidity ^0.4.18;

contract Oracle {
  struct Request {
    bytes data;
    function(bytes memory) external callback;
  }
  Request[] requests;
  event NewRequest(uint);
  function query(bytes data, function(bytes memory) external callback) {
    requests.push(Request(data, callback));
    NewRequest(requests.length - 1);
  }
  function reply(uint requestID, bytes response) {
    // Here goes the check that the reply comes from a trusted source
    requests[requestID].callback(response);
  }
}

contract OracleUser {
  Oracle constant oracle = Oracle(0x1234567); // known contract
  function buySomething() {
    oracle.query("USD", this.oracleResponse);
  }
  function oracleResponse(bytes response) {
    require(msg.sender == address(oracle));
  }
}

Pure Functions

Functions can be declared pure in which case they promise not to read from or modify the state.

function f(uint a) pure returns (uint) {
    return a * 42;
}

Payable Functions

Functions that receive Ether are marked as payable function.

Fallback Function

A contract can have exactly one unnamed function. This function cannot have arguments and cannot return anything. It is executed on a call to the contract if none of the other functions match the given function identifier (or if no data was supplied at all).

function() {
  // Do something
}

Mathematical and Cryptographic Functions

  • addmod(uint x, uint y, uint k) returns (uint): compute (x + y) % k where the addition is performed with arbitrary precision and does not wrap around at 2**256.
  • mulmod(uint x, uint y, uint k) returns (uint): compute (x * y) % k where the multiplication is performed with arbitrary precision and does not wrap around at 2**256.
  • sha3(...) returns (bytes32): alias to keccak256
  • ripemd160(...) returns (bytes20): compute RIPEMD-160 hash of the (tightly packed) arguments
  • keccak256(...) returns (bytes32): compute the Ethereum-SHA-3 (Keccak-256) hash of the (tightly packed) arguments
  • sha256(...) returns (bytes32): compute the SHA-256 hash of the (tightly packed) arguments

Interface

Interfaces are similar to abstract contracts, but they have restrictions:

  • Cannot have any functions implemented.
  • Cannot inherit other contracts or interfaces.
  • Cannot define constructor.
  • Cannot define variables.
  • Cannot define structs.
  • Cannot define enums.

Interfaces are like abstract contracts which other contracts can inherit. Inheriting contract has to implement all interface methods. Interfaces can't contain anything else than function signatures.

pragma solidity ^0.4.11;

interface Token {
    function transfer(address recipient, uint amount);
}

Contracts

Creating contracts using new

Contracts can be created from another contract using new keyword. The source of the contract has to be known in advance.

contract A {
    function add(uint _a, uint _b) returns (uint) {
        return _a + _b;
    }
}

contract C {
    address a;
    function f(uint _a) {
        a = new A();
    }
}

Contract Inheritance

Solidity supports multiple inheritance and polymorphism.

contract owned {
    function owned() { owner = msg.sender; }
    address owner;
}

contract mortal is owned {
    function kill() {
        if (msg.sender == owner) selfdestruct(owner);
    }
}

contract final is mortal {
    function kill() { 
        super.kill(); // Calls kill() of mortal.
    }
}
Example

Memo memo = new Memo("my precious memo"); - create new contract Memo memo = Memo(existingMemoAddress); - intialize already existing contract this; - current contract address(this); - converts contract to address selfdestruct(ownerAddress); - destroys contract and sends it's funds to address. Must be called from contract.

Constructor of base class

contract A {
    uint a;
    constructor(uint _a) { a = _a; }
}

contract B is A(1) {
    constructor(uint _b) A(_b) {
    }
}

Abstract Contracts

Contracts that contain implemented and non-implemented functions. Such contracts cannot be compiled, but they can be used as base contracts.

pragma solidity ^0.4.0;

contract A {
    function C() returns (bytes32);
}

contract B is A {
    function C() returns (bytes32) { return "c"; }
}

Deprecations

constant - function modifier year - time literal suffix throw - alias to revert block.blockhash(block_number); - replaced by global blockhash(block_number); msg.gas - replaced by global gasleft(); suicide - alias to selfdestruct(address) keccak256(a, b) - deprecated in favor ofkeccak256(abi.encodePacked(a, b))

Events

Events allow the convenient usage of the EVM logging facilities, which in turn can be used to “call” JavaScript callbacks in the user interface of a dapp, which listen for these events.

Up to three parameters can receive the attribute indexed, which will cause the respective arguments to be searched for.

All non-indexed arguments will be stored in the data part of the log.

pragma solidity ^0.4.0;

contract ClientReceipt {
    event Deposit(
        address indexed _from,
        bytes32 indexed _id,
        uint _value
    );

    function deposit(bytes32 _id) payable {
        emit Deposit(msg.sender, _id, msg.value);
    }
}

Library

Libraries are similar to contracts, but they are deployed only once at a specific address, and their code is used with delegatecall (callcode).

library arithmatic {
    function add(uint _a, uint _b) returns (uint) {
        return _a + _b;
    }
}

contract C {
    uint sum;

    function f() {
        sum = arithmatic.add(2, 3);
    }
}

Error Handling

  • assert(bool condition): throws if the condition is not met - to be used for internal errors.
  • require(bool condition): throws if the condition is not met - to be used for errors in inputs or external components.
  • revert(): abort execution and revert state changes
 function sendHalf(address addr) payable returns (uint balance) {
    require(msg.value % 2 == 0); // Only allow even numbers
    uint balanceBeforeTransfer = this.balance;
    addr.transfer(msg.value / 2);
    assert(this.balance == balanceBeforeTransfer - msg.value / 2);
    return this.balance;
}

Variables

Transaction variables

  • msg.data (bytes): complete calldata
  • msg.gas (uint): remaining gas
  • msg.sender (address): sender of the message (current call)
  • msg.sig (bytes4): first four bytes of the calldata (i.e. function identifier)
  • msg.value (uint): number of wei sent with the message
  • tx.gasprice (uint): gas price of the transaction
  • tx.origin (address): sender of the transaction (full call chain)

Block variables

  • block.blockhash(uint blockNumber) returns (bytes32): hash of the given block - only works for the 256 most recent blocks excluding current
  • block.coinbase (address): current block miner’s address
  • block.difficulty (uint): current block difficulty
  • block.gaslimit (uint): current block gaslimit
  • block.number (uint): current block number
  • block.timestamp (uint): current block timestamp as seconds since unix epoch
  • now (uint): current block timestamp (alias for block.timestamp)

Here is an image cheatsheet for quick recall. Image