-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathac_gcn.py
680 lines (526 loc) · 29.8 KB
/
ac_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
from models import *
from helper import *
import tensorflow as tf
"""
Abbreviations used in variable names:
et: event-time
de: dependency parse
"""
class DCT_NN(Model):
# Pads the data in a batch
def padData(self, data, seq_len):
temp = np.zeros((len(data), seq_len), np.int32)
mask = np.zeros((len(data), seq_len), np.float32)
for i, ele in enumerate(data):
temp[i, :len(ele)] = ele[:seq_len]
mask[i, :len(ele)] = np.ones(len(ele[:seq_len]), np.float32)
return temp, mask
# Generates the one-hot representation
def getOneHot(self, data, num_class):
temp = np.zeros((len(data), num_class), np.int32)
for i, ele in enumerate(data):
temp[i, ele] = 1
return temp
def getBatches(self, data, shuffle = True):
if shuffle: random.shuffle(data)
num_batches = len(data) // self.p.batch_size
for i in range(num_batches):
start_idx = i * self.p.batch_size
yield data[start_idx : start_idx + self.p.batch_size]
# Merges edge labels or Ignores Edge labels based on cmd arguments
def updateEdges(self, data, merge_edges=False):
for dtype in ['train', 'test', 'valid']:
for i, edges in enumerate(data[dtype]['ETEdges']):
for j in range(len(edges)-1, -1, -1):
edge = edges[j]
lbl = self.id2ce[edge[2]]
if lbl not in self.n_et2id: del data[dtype]['ETEdges'][i][j]
else: data[dtype]['ETEdges'][i][j] = (edge[0], edge[1], self.n_et2id[lbl])
if merge_edges:
for i, edges in enumerate(data[dtype]['ETEdges']):
for j, edge in enumerate(edges):
if edge[2] == self.n_et2id['BEFORE']: data[dtype]['ETEdges'][i][j] = (edge[1], edge[0], self.n_et2id['AFTER'])
elif edge[2] == self.n_et2id['INCLUDES']: data[dtype]['ETEdges'][i][j] = (edge[1], edge[0], self.n_et2id['IS_INCLUDED'])
# Remove dependency edges with negative source/destination ids
for i, edges in enumerate(data[dtype]['DepEdges']):
for j in range(len(edges)-1, -1, -1):
edge = edges[j]
if edge[0] < 0 or edge[1] < 0:
del data[dtype]['DepEdges'][i][j]
if merge_edges: self.num_etLabel -= 2
return data
# Remove documents with very large number of edges in Event-Time Graph
def rm_hdeg_docs(self, data):
rm_idx = {}
for dtype in ['train', 'test', 'valid']:
rm_idx[dtype] = set()
for i,vec in enumerate(data[dtype]['ETIdx']):
if len(vec) > self.p.th_maxet:
rm_idx[dtype].add(i)
for i,vec in enumerate(data[dtype]['ET']):
if len(vec)> self.p.th_seq_len:
rm_idx[dtype].add(i)
for i, etIdx in enumerate(data[dtype]['ETIdx']):
if len(etIdx) == 0:
rm_idx[dtype].add(i)
return rm_idx
# Loads the data and arranges data for feeding to TensorFlow
def load_data(self):
data = pickle.load(open(self.p.dataset, 'rb'))
self.voc2id = data['voc2id']
self.id2voc = data['id2voc']
self.tense2id = data['tense2id']
self.et2id = data['et2id']
self.id2ce = dict([(v,k) for k,v in self.et2id.items()])
self.de2id = data['de2id']
self.n_et2id = {
'AFTER': 0,
'IS_INCLUDED': 1,
'SIMULTANEOUS': 2,
'DURING': 2,
'BEFORE': 3,
'INCLUDES': 4,
}
self.num_etLabel = len(self.n_et2id)
self.num_deLabel = len(self.de2id)
data = self.updateEdges(data, self.p.merge_edges) # Merge edge labels
rm_idx = self.rm_hdeg_docs(data) # Indexes to be removed
print('Number of classes {}'.format(len(np.unique(data['train']['Y']))))
self.num_class = self.p.num_class
self.logger.info('Removing Train:{}, Test:{}, Valid:{}'.format(len(rm_idx['train']), len(rm_idx['test']), len(rm_idx['valid'])))
# Get Word List
self.wrd_list = list(self.voc2id.items()) # Get vocabulary
self.wrd_list.sort(key=lambda x: x[1]) # Sort vocabulary based on ids
self.wrd_list, _ = zip(*self.wrd_list)
self.data_list = {}
key_list = ['X', 'Y', 'ETIdx', 'ETEdges', 'DepEdges', 'Fname']
for dtype in ['train', 'test', 'valid']:
if self.p.use_et_labels == False:
for i, edges in enumerate(data[dtype]['ETEdges']): # if you want to ignore level information in event time graph
for j, edge in enumerate(edges): data[dtype]['ETEdges'][i][j] = (edge[0], edge[1], 0)
self.num_etLabel = 1
if self.p.use_de_labels == False:
for i, edges in enumerate(data[dtype]['DepEdges']): # if you want to ignore level information in dependency graph
for j, edge in enumerate(edges): data[dtype]['DepEdges'][i][j] = (edge[0], edge[1], 0)
self.num_deLabel = 1
data[dtype]['Y'] = self.getOneHot(data[dtype]['Y'], self.num_class) # Representing labels by one hot notation
self.data_list[dtype] = []
for i in range(len(data[dtype]['X'])):
if i in rm_idx[dtype]: continue
self.data_list[dtype].append([data[dtype][key][i] for key in key_list]) # data_list contains all the fields for train test and valid documents
self.logger.info('Document count [{}]: {}'.format(dtype, len(self.data_list[dtype])))
self.Et_index = data['valid']['ETIdx']
self.data = data
# Loads adjacency matrix in sparse matrix format, required for feeding to Tensorflow
def get_adj(self, edgeList, batch_size, max_nodes, max_labels):
adj_main_in, adj_main_out = [], []
for edges in edgeList:
adj_in, adj_out = {}, {}
in_ind, in_data = ddict(list), ddict(list)
out_ind, out_data = ddict(list), ddict(list)
for src, dest, lbl in edges:
out_ind [lbl].append((src, dest))
out_data[lbl].append(1.0)
in_ind [lbl].append((dest, src))
in_data [lbl].append(1.0)
try:
for lbl in range(max_labels):
if lbl not in out_ind and lbl not in in_ind:
adj_in [lbl] = sp.coo_matrix((max_nodes, max_nodes))
adj_out[lbl] = sp.coo_matrix((max_nodes, max_nodes))
else:
adj_in [lbl] = sp.coo_matrix((in_data[lbl], zip(*in_ind[lbl])), shape=(max_nodes, max_nodes))
adj_out[lbl] = sp.coo_matrix((out_data[lbl], zip(*out_ind[lbl])), shape=(max_nodes, max_nodes))
except Exception as e:
pdb.set_trace()
adj_main_in.append(adj_in)
adj_main_out.append(adj_out)
return adj_main_in, adj_main_out
def add_placeholders(self):
self.input_x = tf.placeholder(tf.int32, shape=[None, None], name='input_data') # Words in a document (batch_size x max_words)
self.input_y = tf.placeholder(tf.int32, shape=[None, None], name='input_labels') # Actual document creation year of the document
self.x_len = tf.placeholder(tf.int32, shape=[None], name='input_len') # Number of words in each document in a batch
self.et_idx = tf.placeholder(tf.int32, shape=[None, None], name='et_idx') # Index of tokens which are events/time_expressions
self.et_mask = tf.placeholder(tf.float32, shape=[None, None], name='et_mask')
# Array of batch_size number of dictionaries, where each dictionary is mapping of label to sparse_placeholder [Temporal graph]
self.et_adj_mat_in = [dict([(lbl, tf.sparse_placeholder(tf.float32, shape=[None, None], name= 'et_adj_mat_in_{}'. format(lbl))) for lbl in range(self.num_etLabel)]) for i in range(self.p.batch_size) ]
self.et_adj_mat_out = [dict([(lbl, tf.sparse_placeholder(tf.float32, shape=[None, None], name= 'et_adj_mat_out_{}'.format(lbl))) for lbl in range(self.num_etLabel)]) for i in range(self.p.batch_size) ]
# Array of batch_size number of dictionaries, where each dictionary is mapping of label to sparse_placeholder [Syntactic graph]
self.de_adj_mat_in = [dict([(lbl, tf.sparse_placeholder(tf.float32, shape=[None, None], name= 'de_adj_mat_in_{}'. format(lbl))) for lbl in range(self.num_deLabel)]) for i in range(self.p.batch_size) ]
self.de_adj_mat_out = [dict([(lbl, tf.sparse_placeholder(tf.float32, shape=[None, None], name= 'de_adj_mat_out_{}'.format(lbl))) for lbl in range(self.num_deLabel)]) for i in range(self.p.batch_size) ]
self.seq_len = tf.placeholder(tf.int32, shape=(), name='seq_len') # Maximum number of words in documents of a batch
self.max_et = tf.placeholder(tf.int32, shape=(), name='max_et') # Maximum number of events/time_expressions in documents of a batch
self.dropout = tf.placeholder_with_default(self.p.dropout, shape=(), name='dropout') # Dropout used in GCN Layer
self.rec_dropout = tf.placeholder_with_default(self.p.rec_dropout, shape=(), name='rec_dropout') # Dropout used in Bi-LSTM
self.de_out_mask = tf.placeholder(tf.int32, shape=[None], name='input_len')
def pad_dynamic(self, X, et_idx):
seq_len, max_et, de_out_mask = 0, 0, []
x_len = np.zeros((len(X)), np.int32)
for i, x in enumerate(X):
seq_len = max(seq_len, len(x))
x_len[i] = len(x)
for et in et_idx: max_et = max(max_et, len(et))
x_pad, _ = self.padData(X, seq_len)
et_pad, et_mask = self.padData(et_idx, max_et)
return x_pad, x_len, et_pad, et_mask, seq_len, max_et
def create_feed_dict(self, batch, wLabels=True, dtype='train'):
X, Y, et_idx, ETEdges, DepEdges, _ = zip(*batch)
x_pad, x_len, et_pad, et_mask, seq_len, max_et = self.pad_dynamic(X, et_idx)
feed_dict = {}
feed_dict[self.input_x] = np.array(x_pad)
feed_dict[self.x_len] = np.array(x_len)
if wLabels: feed_dict[self.input_y] = np.array(Y)
feed_dict[self.et_idx] = np.array(et_pad)
feed_dict[self.et_mask] = np.array(et_mask)
feed_dict[self.seq_len] = seq_len
feed_dict[self.max_et] = max_et
et_adj_in, et_adj_out = self.get_adj(ETEdges, self.p.batch_size, max_et+1, self.num_etLabel) # max_et + 1(DCT)
de_adj_in, de_adj_out = self.get_adj(DepEdges, self.p.batch_size, seq_len, self.num_deLabel)
for i in range(self.p.batch_size):
for lbl in range(self.num_etLabel):
feed_dict[self.et_adj_mat_in[i][lbl]] = tf.SparseTensorValue( indices = np.array([et_adj_in[i][lbl].row, et_adj_in[i][lbl].col]).T,
values = et_adj_in[i][lbl].data,
dense_shape = et_adj_in[i][lbl].shape)
feed_dict[self.et_adj_mat_out[i][lbl]] = tf.SparseTensorValue( indices = np.array([et_adj_out[i][lbl].row, et_adj_out[i][lbl].col]).T,
values = et_adj_out[i][lbl].data,
dense_shape = et_adj_out[i][lbl].shape)
for lbl in range(self.num_deLabel):
feed_dict[self.de_adj_mat_in[i][lbl]] = tf.SparseTensorValue( indices = np.array([de_adj_in[i][lbl].row, de_adj_in[i][lbl].col]).T,
values = de_adj_in[i][lbl].data,
dense_shape = de_adj_in[i][lbl].shape)
feed_dict[self.de_adj_mat_out[i][lbl]] = tf.SparseTensorValue( indices = np.array([de_adj_out[i][lbl].row, de_adj_out[i][lbl].col]).T,
values = de_adj_out[i][lbl].data,
dense_shape = de_adj_out[i][lbl].shape)
feed_dict[self.de_out_mask] = np.array(x_len)
if dtype != 'train':
feed_dict[self.dropout] = 1.0
feed_dict[self.rec_dropout] = 1.0
return feed_dict
# Word attention layer
def AttentionLayer(self, de_out_dim, de_out, sequence_length, length, name = "Attention"):
with tf.variable_scope('name-%s' % (name)) as scope:
w_attn_1 = tf.get_variable('w_attn_1', [de_out_dim, de_out_dim], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
w_attn_2 = tf.get_variable('w_attn_2', [de_out_dim, 1], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
with tf.name_scope('attn_weights'):
de_out = tf.reshape(de_out, [-1,de_out_dim])
store = []
attent = []
for i in range(self.p.batch_size):
x = de_out[sequence_length*i:sequence_length*i + length[i]]
nn_1 = tf.tanh(tf.matmul(x, w_attn_1))
if self.p.dropout != 1.0: nn_1 = tf.nn.dropout(nn_1, keep_prob=self.p.dropout)
keep_attn = tf.nn.softmax(tf.matmul(nn_1, w_attn_2), axis = 0)
nn_2 = tf.tile(keep_attn, (1, de_out_dim))
out = nn_2 * x
out = tf.reduce_sum(out, axis = 0)
store.append(out)
attent.append(keep_attn)
main_out = tf.stack(store)
return main_out, attent
# GCN Layer Implementation for S-GCN
def gcnLayer(self, gcn_in, # Input to GCN Layer
in_dim, # Dimension of input to GCN Layer
gcn_dim, # Hidden state dimension of GCN
batch_size, # Batch size
max_nodes, # Maximum number of nodes in graph
max_labels, # Maximum number of edge labels
adj_in, # Adjacency matrix for in edges
adj_out, # Adjacency matrix for out edges
num_layers=1, # Number of GCN Layers
name="GCN"):
out = []
out.append(gcn_in)
for layer in range(num_layers):
gcn_in = out[-1] # out contains the output of all the GCN layers, intitally contains input to first GCN Layer
if len(out) > 1: in_dim = gcn_dim # After first iteration the in_dim = gcn_dim
with tf.name_scope('%s-%d' % (name,layer)):
act_sum = tf.zeros([batch_size, max_nodes, gcn_dim])
for lbl in range(max_labels):
with tf.variable_scope('label-%d_name-%s_layer-%d' % (lbl, name, layer)) as scope:
w_in = tf.get_variable('w_in', [in_dim, gcn_dim], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
b_in = tf.get_variable('b_in', [1, gcn_dim], initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
w_out = tf.get_variable('w_out', [in_dim, gcn_dim], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
b_out = tf.get_variable('b_out', [1, gcn_dim], initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
w_loop = tf.get_variable('w_loop', [in_dim, gcn_dim], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
if self.p.wGate:
w_gin = tf.get_variable('w_gin', [in_dim, 1], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
b_gin = tf.get_variable('b_gin', [1], initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
w_gout = tf.get_variable('w_gout', [in_dim, 1], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
b_gout = tf.get_variable('b_gout', [1], initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
w_gloop = tf.get_variable('w_gloop',[in_dim, 1], initializer=tf.contrib.layers.xavier_initializer(), regularizer=self.regularizer)
with tf.name_scope('in_arcs-%s_name-%s_layer-%d' % (lbl, name, layer)):
inp_in = tf.tensordot(gcn_in, w_in, axes=[2,0]) + tf.expand_dims(b_in, axis=0)
in_t = tf.stack([tf.sparse_tensor_dense_matmul(adj_in[i][lbl], inp_in[i]) for i in range(batch_size)])
if self.p.dropout != 1.0: in_t = tf.nn.dropout(in_t, keep_prob=self.p.dropout)
if self.p.wGate:
inp_gin = tf.tensordot(gcn_in, w_gin, axes=[2,0]) + tf.expand_dims(b_gin, axis=0)
in_gate = tf.stack([tf.sparse_tensor_dense_matmul(adj_in[i][lbl], inp_gin[i]) for i in range(batch_size)])
in_gsig = tf.sigmoid(in_gate)
in_act = in_t * in_gsig
else:
in_act = in_t
with tf.name_scope('out_arcs-%s_name-%s_layer-%d' % (lbl, name, layer)):
inp_out = tf.tensordot(gcn_in, w_out, axes=[2,0]) + tf.expand_dims(b_out, axis=0)
out_t = tf.stack([tf.sparse_tensor_dense_matmul(adj_out[i][lbl], inp_out[i]) for i in range(batch_size)])
if self.p.dropout != 1.0: out_t = tf.nn.dropout(out_t, keep_prob=self.p.dropout)
if self.p.wGate:
inp_gout = tf.tensordot(gcn_in, w_gout, axes=[2,0]) + tf.expand_dims(b_gout, axis=0)
out_gate = tf.stack([tf.sparse_tensor_dense_matmul(adj_out[i][lbl], inp_gout[i]) for i in range(batch_size)])
out_gsig = tf.sigmoid(out_gate)
out_act = out_t * out_gsig
else:
out_act = out_t
with tf.name_scope('self_loop'):
inp_loop = tf.tensordot(gcn_in, w_loop, axes=[2,0])
if self.p.dropout != 1.0: inp_loop = tf.nn.dropout(inp_loop, keep_prob=self.p.dropout)
if self.p.wGate:
inp_gloop = tf.tensordot(gcn_in, w_gloop, axes=[2,0])
loop_gsig = tf.sigmoid(inp_gloop)
loop_act = inp_loop * loop_gsig
else:
loop_act = inp_loop
act_sum += in_act + out_act + loop_act
gcn_out = tf.nn.relu(act_sum)
out.append(gcn_out)
return out
# Lookup equivalent for tensors with dim > 2
def gather(self, data, pl_idx, pl_mask, max_len, name=None):
with tf.name_scope(name):
idx1 = tf.range(self.p.batch_size, dtype=tf.int32)
idx1 = tf.reshape(idx1, [-1, 1])
idx1_ = tf.reshape(tf.tile(idx1, [1, max_len]) , [-1, 1])
idx_reshape = tf.reshape(pl_idx, [-1, 1])
indices = tf.concat((idx1_, idx_reshape), axis=1)
et_vecs = tf.gather_nd(data, indices)
et_vecs = tf.reshape(et_vecs, [self.p.batch_size, self.max_et, -1])
mask_vec = tf.expand_dims(pl_mask, axis=2)
return et_vecs * mask_vec
# Creates the compuational graph
def add_model(self):
nn_in = self.input_x
with tf.variable_scope('Embeddings') as scope:
embed_init = getEmbeddings(self.p.embed_loc, self.wrd_list, self.p.embed_dim)
embed_init = np.vstack( (np.zeros(self.p.embed_dim, np.float32), embed_init))
embeddings = tf.get_variable('embeddings', initializer=embed_init, trainable=True, regularizer=self.regularizer)
embeds = tf.nn.embedding_lookup(embeddings, self.input_x)
with tf.variable_scope('Bi-LSTM') as scope:
fw_cell = tf.contrib.rnn.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(self.p.lstm_dim), output_keep_prob=self.rec_dropout)
bk_cell = tf.contrib.rnn.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(self.p.lstm_dim), output_keep_prob=self.rec_dropout)
val, state = tf.nn.bidirectional_dynamic_rnn(fw_cell, bk_cell, embeds, sequence_length=self.x_len, dtype=tf.float32)
lstm_out = tf.concat((val[0], val[1]), axis=2)
de_in = lstm_out
de_in_dim = self.p.lstm_dim*2 # Concatenated output of forward and backward LSTM (Bi-LSTM)
de_out = self.GCNLayer( gcn_in = de_in, in_dim = de_in_dim, gcn_dim = self.p.de_gcn_dim,
batch_size = self.p.batch_size, max_nodes = self.seq_len, max_labels = self.num_deLabel,
adj_in = self.de_adj_mat_in, adj_out = self.de_adj_mat_out,
num_layers = self.p.de_layers, name = "GCN_DE")
ce_in_dim = self.p.de_gcn_dim
ce_in = de_out[-1]
dct_final, main_attnt = self.AttentionLayer(de_out_dim = ce_in_dim, de_out = ce_in, sequence_length = self.seq_len, length = self.x_len)
fc_in_dim = ce_in_dim
with tf.variable_scope('FC1') as scope:
w = tf.get_variable('w', [fc_in_dim, self.num_class], initializer=tf.truncated_normal_initializer(), regularizer=self.regularizer)
b = tf.get_variable('b', [self.num_class], initializer=tf.constant_initializer(0.0), regularizer=self.regularizer)
nn_out = tf.matmul(dct_final, w) + b
return nn_out, nn_in, main_attnt
def add_loss(self, nn_out):
with tf.name_scope('Loss_op'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=nn_out, labels=self.input_y))
if self.regularizer != None: loss += tf.contrib.layers.apply_regularization(self.regularizer, tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
return loss
def add_optimizer(self, loss):
with tf.name_scope('Optimizer'):
optimizer = tf.train.AdamOptimizer(self.p.lr)
train_op = optimizer.minimize(loss)
return train_op
def __init__(self, params):
self.p = params
self.logger = get_logger(self.p.name.replace('/', '_'))
self.logger.info(vars(self.p))
self.p.batch_size = self.p.batch_size
if self.p.l2 == 0.0: self.regularizer = None
else: self.regularizer = tf.contrib.layers.l2_regularizer(scale=self.p.l2)
self.load_data()
self.add_placeholders()
nn_out, nn_in, attend = self.add_model()
self.loss = self.add_loss(nn_out) #Computes Loss
self.inp = nn_in
self.train_op = self.add_optimizer(self.loss)
self.logits = tf.nn.softmax(nn_out)
self.cont_attention = attend
y_pred = tf.argmax(self.logits, 1)
corr_pred = tf.equal(tf.argmax(self.input_y, 1), y_pred)
self.corr_pred = tf.reduce_sum(tf.cast(corr_pred, 'int32'))
self.merged_summ = tf.summary.merge_all()
self.summ_writer = None
def predict(self, sess, data, wLabels=True, shuffle=False):
losses, results, y_pred, y, fnames, logit_list, input_net, attention_context = [], [], [], [], [], [], [], []
total_correct, total_cnt = 0, 0
for step, batch in enumerate(self.getBatches(data, shuffle)):
if not wLabels:
feed = self.create_feed_dict(batch, wLabels, dtype='test')
logits, correct, inp_net, attn_cont = sess.run([self.logits, self.corr_pred, self.inp, self.cont_attention] , feed_dict = feed)
else:
feed = self.create_feed_dict(batch, dtype='test')
loss, logits, correct, inp_net, attn_cont = sess.run([self.loss, self.logits, self.corr_pred, self.inp, self.cont_attention], feed_dict = feed)
losses.append(loss)
total_correct += correct
total_cnt += len(batch)
attention_context += attn_cont
input_net += inp_net.tolist()
pred_ind = logits.argmax(axis=1)
logit_list += logits.tolist()
y_pred += pred_ind.tolist()
_, Y, _, _, _ ,fname= zip(*batch)
y += np.array(Y).argmax(axis=1).tolist()
fnames += list(fname)
results.append(pred_ind)
if step % 5 == 0:
self.logger.info('Evaluating Test/Valid ({}/{}):\t{:.5}\t{:.5}\t{}'.format(step, len(data)//self.p.batch_size, total_correct/total_cnt, np.mean(losses), self.p.name.replace('/', '_')))
accuracy = float(total_correct)/total_cnt * 100.0
self.logger.info('Accuracy: {}'.format(accuracy))
if wLabels: return np.mean(losses), results, accuracy, y, y_pred, fnames, logit_list, input_net, attention_context
else: return 0, results, accuracy, y, y_pred, fnames, logit_list, input_net, attention_context
def run_epoch(self, sess, data, epoch, shuffle=True):
drop_rate = self.p.dropout
losses = []
total_correct, total_cnt = 0, 0
for step, batch in enumerate(self.getBatches(data, shuffle)):
feed = self.create_feed_dict(batch)
loss, correct, _= sess.run([self.loss, self.corr_pred, self.train_op], feed_dict=feed)
if(np.isnan(loss)):
print(et_cnt)
pdb.set_trace()
total_cnt += len(batch)
total_correct += correct
losses.append(loss)
if step % 5 == 0:
self.logger.info('E:{} Train Accuracy ({}/{}):\t{:.5}\t{:.5}\t{}\t{:.5}'.format(epoch, step, len(data)//self.p.batch_size, total_correct/total_cnt, np.mean(losses), self.p.name.replace('/', '_'), self.best_val_acc))
accuracy = float(total_correct)/total_cnt * 100.0
self.logger.info('Training Loss:{}, Accuracy: {}'.format(np.mean(losses), accuracy))
return np.mean(losses), accuracy
def fit(self, sess):
self.best_val_acc, self.best_train_acc = 0.0, 0.0
saver = tf.train.Saver()
if not os.path.exists(save_dir): os.makedirs(save_dir)
save_path = os.path.join(save_dir, 'best_validation')
if self.p.restore: saver.restore(sess, save_path)
self.best_prf = None
if not self.p.onlyTest:
for epoch in range(self.p.max_epochs):
self.logger.info('Epoch: {}'.format(epoch))
train_loss, train_acc = self.run_epoch(sess, self.data_list['train'], epoch)
val_loss, val_pred, val_acc, y, y_pred, fnames, logit_list, _, _ = self.predict(sess, self.data_list['valid'])
if val_acc > self.best_val_acc:
self.best_val_acc = val_acc
self.best_train_acc = train_acc
self.best_prf = precision_recall_fscore_support(y, y_pred, average='weighted')
saver.save(sess=sess, save_path=save_path)
self.logger.info('[Epoch {}]: Training Loss: {:.5}, Training Acc: {:.5}, Valid Loss: {:.5}, Valid Acc: {:.5} Best Acc: {:.5}\n'.format(epoch, train_loss, train_acc, val_loss, val_acc, self.best_val_acc))
self.logger.info(self.best_prf)
try:
self.log_db.update({'_id': self.p.name.replace('/', '_')}, {
'$push': {
"Train_loss": float(train_loss),
"Train_acc": float(train_acc),
"Valid_loss": float(val_loss),
"Valid_acc": float(val_acc)
},
'$set': {
"Best_val_acc": float(self.best_val_acc),
"Best_train_acc": float(self.best_train_acc),
"y_actual": y,
"y_pred": y_pred,
"results": list(self.best_prf),
"fnames": fnames,
"Params": vars(self.p)
}
}, upsert=True)
except Exception as e:
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
self.logger.info('\nException Type: {}, \nCause: {}, \nfname: {}, \nline_no: {}'.format(exc_type, e.args[0], fname, exc_tb.tb_lineno))
self.logger.info('Running on Test set')
_, test_pred, test_acc, y, y_pred, fnames, logit_list, net_inp, conAttn = self.predict(sess, self.data_list[self.p.split])
self.logger.info('Test Acc:{}'.format(test_acc))
perf = precision_recall_fscore_support(y, y_pred, average='weighted')
word_list = []
for i in range(len(net_inp)):
keep_word = []
for j in range(len(net_inp[i])):
if net_inp[i][j] == 0:
break
keep_word.append(self.wrd_list[net_inp[i][j]])
word_list.append(keep_word)
res ={
'Et_index' : self.Et_index,
'cont_attn': conAttn,
'input' : word_list,
'logits' : logit_list,
'lbl2id' : self.data['lbl2id'],
'y_actual': y,
'y_pred': y_pred,
'results': list(perf),
'fnames': fnames
}
self.log_db.update({'_id': self.p.name.replace('/', '_')}, {
'$set': {
"y_actual": y,
"y_pred": y_pred,
"results": list(perf),
"fnames": fnames
}
}, upsert=True)
if __name__== "__main__":
print("Hi")
parser = argparse.ArgumentParser(description='Main Neural Network for Time Stamping Documents')
parser.add_argument('-data', dest="dataset", required=True, help='Dataset to use')
parser.add_argument('-class', dest="num_class", required=True, type=int, help='Number of classes (years/months)')
parser.add_argument('-gpu', dest="gpu", default='0', help='GPU to use')
parser.add_argument('-name', dest="name", default='test_'+str(uuid.uuid4()),help='Name of the run')
parser.add_argument('-embed', dest="embed_init", default='wiki_300', help='Embedding for initialization')
parser.add_argument('-drop', dest="dropout", default=1.0, type=float, help='Dropout for full connected layer')
parser.add_argument('-drop_half', dest="drop_half", action = 'store_true', help='Use dropout for half epochs')
parser.add_argument('-rdrop', dest="rec_dropout", default=1.0, type=float, help='Recurrent dropout for LSTM')
parser.add_argument('-lr', dest="lr", default=0.001, type=float, help='Learning rate')
parser.add_argument('-batch', dest="batch_size", default=64, type=int, help='Batch size')
parser.add_argument('-epoch', dest="max_epochs", default=50, type=int, help='Max epochs')
parser.add_argument('-l2', dest="l2", default=0.001, type=float, help='L2 regularization')
parser.add_argument('-l2_half', dest="l2_half", action='store_true', help='use l2 for half epochs')
parser.add_argument('-seed', dest="seed", default=1234, type=int, help='Seed for randomization')
parser.add_argument('-lstm_dim', dest="lstm_dim", default=128, type=int, help='Hidden state dimension of Bi-LSTM')
parser.add_argument('-de_dim', dest="de_gcn_dim", default=128, type=int, help='Hidden state dimension of GCN over dependency tree')
parser.add_argument('-et_dim', dest="et_gcn_dim", default=128, type=int, help='Hidden state dimension of GCN over ET-graphs')
parser.add_argument('-fc1_dim', dest="fc1_dim", default=128, type=int, help='Hidden state dimension of FC layer')
parser.add_argument('-de_layer', dest="de_layers", default=1, type=int, help='Number of layers in GCN over dependency tree')
parser.add_argument('-et_layer', dest="et_layers", default=2, type=int, help='Number of layers in GCN over ET-graph')
parser.add_argument('-logdb', dest="log_db", default='mod_run', help='MongoDB database for dumping results')
parser.add_argument('-DE', dest="DE", default='gcn', choices=['gated', 'plain', 'gcn', 'none'], help='Use DE just for enchancing time/event embedings')
parser.add_argument('-noGate', dest="wGate", action='store_false', help='Use gating in GCN')
parser.add_argument('-split', dest="split", default='valid', help='Split to use for evaluation')
parser.add_argument('-onlyTest', dest="onlyTest", action='store_true', help='Evaluate model on test')
parser.add_argument('-wETmean', dest="wETmean", action='store_true', help='Include ET mean in final representation')
parser.add_argument('-wAttn', dest="wAttn", action='store_true', help='Use attention or not')
parser.add_argument('-merge', dest="merge_edges", action='store_true', help='Merge edge labels in ET-graph')
parser.add_argument('-de_lbl', dest="use_de_labels", action='store_true', help='Use edge labels in dependency tree')
parser.add_argument('-no-et_lbl',dest="use_et_labels", action='store_false', help='Ignore edge labels in ET-graph')
parser.add_argument('-fix_emb', dest="fix_emb", action='store_true', help='fix embedding for fast training')
parser.add_argument('-dct', dest="dct_type", default='avg', choices=['concat', 'avg', 'last'], help='Select the method for constructing embedding for DCT node')
parser.add_argument('-lstm', dest="wLSTM", action='store_true', help='Include Bi-LSTM in model')
parser.add_argument('-th_et', dest="th_maxet", default=300 , type=int, help='maximum et_nodes')
parser.add_argument('-th_seq', dest="th_seq_len", default=800 , type=int, help='maximum de_nodes or sequence_length')
parser.add_argument('-restore', dest="restore", action='store_true', help='Restore from the previous best saved model')
parser.add_argument('-logdir', dest="log_dir", default='./log/', help='Log directory')
args = parser.parse_args()
args.embed_dim = int(args.embed_init.split('_')[1])
if not args.restore: args.name = args.name + '__' + time.strftime("%d/%m/%Y") + '_' + time.strftime("%H:%M:%S")
tf.set_random_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
set_gpu(args.gpu)
model = DCT_NN(args)
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
model.fit(sess)