-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
175 lines (144 loc) · 8.55 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from __future__ import division, print_function
from manager import BufferManager
from actionsampler import ActionSampleManager
from utils import generate_guide_grid, log_frame, record_screen, draw_from_pred, from_variable_to_numpy, monitor_guide, norm_image
from models import init_models
import os
import sys
import cv2
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import multiprocessing as _mp
from utils.dataset import DataEncoder
mp = _mp.get_context('spawn')
def draw_prediction(step, args, output, bboxes, scores, name, save_path):
if not os.path.isdir(os.path.join(save_path, str(step), name)):
os.makedirs(os.path.join(save_path, str(step), name))
if args.use_detection:
bboxes = bboxes[1:]
scores = scores[1:]
s = "step: {}\n".format(step)
for i in range(args.pred_step):
img = draw_from_pred(args, from_variable_to_numpy(torch.argmax(output['seg_pred'][0, i+1], 0)))
if args.use_detection:
box_list, score_list = bboxes[i], scores[i]
if box_list.size(0) > 0:
# detected some bboxes
for box_id in range(box_list.size(0)):
box = box_list[box_id]
score = score_list[box_id]
s += 'bbox: {} {} {} {} {}\n'.format(box[0], box[1], box[2], box[3], round(score.item(), 3))
# cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), thickness=2)
# cv2.putText(img, "{}".format(round(score.item(), 3)), (box[0], box[1]), cv2.FONT_HERSHEY_COMPLEX, 0.3, (0, 255, 0), 1)
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# cv2.putText(img, 'OffRoad: %0.2f%%' % round(float(100 * output['offroad_prob'][0, i, 1]), 4), (20, 220), cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 0), 1)
# cv2.putText(img, 'Collision: %0.2f%%' % round(float(100 * output['coll_prob'][0, i, 1]), 4), (20, 230), cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 0), 1)
s += 'Step %d\n' % i
if args.use_offroad:
s += 'OffRoad: %0.2f%%\n' % float(100 * output['offroad_prob'][0, i, 1])
if args.use_collision:
s += 'Collision: %0.2f%%\n' % float(100 * output['coll_prob'][0, i, 1])
if args.use_offlane:
s += 'Offlane: %0.2f%%\n' % float(100 * output['offlane_prob'][0, i, 1])
# s += 'Distance: %0.2f%%\n' % float(output['dist'][0, i, 0])
cv2.imwrite(os.path.join(save_path, str(step), name, 'seg%d.png' % (i+1)), img)
with open(os.path.join(save_path, str(step), name, 'pred_frame.txt'), 'w') as f:
f.write(s)
def draw_current_frame(args, action, obs, guidance_distri, guide_action, box_list, score_list, save_path, step):
# draw the visualization for the current frame
img_save_path = os.path.join(save_path, 'obs.png')
img = cv2.cvtColor(obs[..., ::-1], cv2.COLOR_BGR2RGB)
log_file = os.path.join(save_path, 'cur_frame.txt')
log_file = open(log_file, 'w')
s = ""
if args.use_detection:
box_list = box_list[0]
score_list = score_list[0]
if box_list.size(0) > 0:
# detected some bboxes
for box_id in range(box_list.size(0)):
box = box_list[box_id]
score = score_list[box_id]
s += "{} {} {} {} {}\n".format(box[0], box[1], box[2], box[3], round(score.item(), 3))
# cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), thickness=2)
# cv2.putText(img, "{}".format(round(score.item(), 3)), (box[0], box[1]), cv2.FONT_HERSHEY_COMPLEX, 0.3, (0, 255, 0), 1)
# img = monitor_guide(img, guide_action, guidance_distri)
s += "Action:Throttle: {} | Steer: {}\n".format(round(action[0], 2), round(action[1], 2))
log_file.write(s)
# cv2.putText(img, "Action:Throttle: {} | Steer: {}".format(round(action[0], 2), round(action[1], 2)), (10, 10), cv2.FONT_HERSHEY_COMPLEX, 0.3, (0, 255, 0), 1)
cv2.imwrite(img_save_path, img)
def net_infer(args, obs_var, action, net, action_var):
obs_var = norm_image(obs_var)
obs_var = obs_var.view(1, 1, 3*args.frame_history_len, args.frame_height, args.frame_width)
action = torch.from_numpy(action).view(1, args.pred_step, args.num_total_act)
action = Variable(action.cuda().float(), requires_grad=False)
net = net.eval()
with torch.no_grad():
output = net(obs_var, action, training=False, action_var=action_var)
if args.use_offroad:
output['offroad_prob'] = F.softmax(output['offroad_prob'], -1)
if args.use_collision:
output['coll_prob'] = F.softmax(output['coll_prob'], -1)
if args.use_offlane:
output['offlane_prb'] = F.softmax(output['offlane_prob'], -1)
if args.SAS:
output['coll_veh'] = F.softmax(output['coll_veh'], -1)
return output
def evaluate_policy(args, env):
guides = generate_guide_grid(args.bin_divide)
args.checkpoint = args.checkpoint
net, optimizer, epoch, exploration, num_steps = init_models(args)
output_path = args.output_path
for episode in range(100):
buffer_manager = BufferManager(args)
action_manager = ActionSampleManager(args, guides)
action_var = torch.from_numpy(np.array([-1.0, 0.0])).repeat(1, args.frame_history_len - 1, 1).float()
# initialize environment
obs_ori, info = env.reset()
obs = obs_ori.reshape((args.frame_height, 4, args.frame_width, 4, 3)).max(3).max(1)
info['seg'].resize(args.frame_height, args.frame_width)
encoder = DataEncoder()
print('Start episode...')
for step in range(args.max_eval_step):
obs_var = buffer_manager.store_frame(obs, info)
action, guide_action, p = action_manager.sample_action(net=net,
obs=obs,
obs_var=obs_var,
action_var=action_var,
exploration=exploration,
step=step,
explore=False,
testing=True)
# in the test mode, sample_action outputs the guide_action and action
# for future pred_step steps, while we only take those for the next frame
# to execute and store into buffer
output = net_infer(args, obs_var, action, net, action_var)
bboxes, labels, scores = [], [], []
if args.use_detection:
loc_preds, cls_preds = output['loc_pred'][0].cpu(), output['cls_pred'][0].cpu()
for find in range(loc_preds.size(0)):
print(cls_preds[find].sigmoid().max())
frame_loc_pred = loc_preds[find]
frame_cls_pred = cls_preds[find]
pred_bboxes, pred_labels, pred_scores = encoder.decode(frame_loc_pred, frame_cls_pred, input_size=(args.frame_width, args.frame_height))
bboxes.append(pred_bboxes)
labels.append(pred_labels)
scores.append(pred_scores)
draw_prediction(step, args, output, bboxes, scores, 'outcome', '{}/{}'.format(output_path, episode))
# in the testing mode, $action and $guide_action are for multiple samples, we only pick up the first one
guide_action = guide_action[0]
action = action[0]
obs_ori, reward, done, info = env.step(action)
obs = obs_ori.reshape((args.frame_height, 4, args.frame_width, 4, 3)).max(3).max(1)
info['seg'].resize(args.frame_height, args.frame_width)
draw_current_frame(args, action, obs_ori, p, None, bboxes, scores, os.path.join(output_path, str(episode), str(step)), step)
print("step: {0} | action [{1:.2f}, {2:.2f}] coll {3} offroad {4} offlane {5} speed {6:.2f} reward {7:.2f}".format(step, action[0], action[1], info['collision'], info['offroad'],info['offlane'], info['speed'], reward))
action_var = buffer_manager.store_effect(guide_action=guide_action,
action=action,
reward=reward,
done=done,
info=info)
if done:
break