-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathspcbuffer.py
288 lines (254 loc) · 14 KB
/
spcbuffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from __future__ import division, print_function
import numpy as np
import os
import random
import torch
from torch.autograd import Variable
from utils.dataset import DataEncoder
import gc
import json
from utils import norm_image
class SPCBuffer(object):
def __init__(self, args):
self.args = args
self.next_idx = 0
self.num_in_buffer = 0
self.last_idx = 0
self.obs = None
self.action = None
self.done = None
self.collision = None
self.collision_other = None
self.collision_vehicles = None
self.colls_with = None
self.offroad = None
self.offlane = None
self.speed = None
self.seg = None
self.bboxes = None
self.depth = None
self.directions = None
self.bboxes_cls = None
self.expert = None
self.guide_action = None
self.epi_lens = []
self.bbox_encoder = DataEncoder()
width, height = self.args.frame_width, self.args.frame_height
anchors = self.bbox_encoder._get_anchor_boxes(input_size=torch.Tensor((width, height)))
self.anchor_num = anchors.size(0)
def can_sample_guide(self, batch_size):
# determines whether there are enough expert data for self-imitation learning
if len(self.epi_lens) == 0:
return False
bar = self.get_bar()
bar_index = np.where(self.expert[:self.num_in_buffer] >= bar)[0]
if self.args.verbose:
print('Calculating bar from %s' % str(self.epi_lens))
print('Bar: %d' % bar)
print('Number of candidates: %d' % len(bar_index))
return len(bar_index) >= batch_size
def get_bar(self):
# calculate the bar according to which expert guidance data are selected
idx = int(len(self.epi_lens) * self.args.expert_ratio)
bar = max(sorted(self.epi_lens, reverse=True)[idx], self.args.expert_bar)
return bar
def sample_guide(self, batch_size):
# sample expert guidance replay data for self-imitation learning
indices = np.where(self.expert[:self.num_in_buffer] >= self.get_bar())[0]
indices = list(np.random.choice(list(indices), batch_size))
obs = torch.from_numpy(np.concatenate([self.obs[idx][np.newaxis, :] for idx in indices], axis=0)).float()
obs = norm_image(obs)
guide_action = Variable(torch.from_numpy(self.guide_action[indices]), requires_grad=False).long()
if torch.cuda.is_available():
obs = obs.cuda()
guide_action = guide_action.cuda()
return obs, guide_action
def sample_n_unique(self, sampling_f, n):
res = []
while len(res) < n:
candidate = sampling_f()
done = self.sample_done(candidate)
if candidate not in res and done:
res.append(candidate)
return res
def sample_done(self, idx):
if idx < 10 or idx >= self.num_in_buffer - self.args.pred_step - 10:
return False
else:
done_list = self.done[idx - self.args.frame_history_len + 1: idx + self.args.pred_step + 1]
if np.sum(done_list) >= 1.0:
return False
else:
return True
def can_sample(self, batch_size):
return (batch_size * (self.args.pred_step + 1) + 20 + self.args.pred_step <= self.num_in_buffer)
def update_epi(self, idx_buffer, safe_buffer, epi_len):
self.expert[idx_buffer] = safe_buffer
self.epi_lens.append(epi_len)
def _encode_sample(self, indices):
data_dict = dict()
data_dict['obs_batch'] = np.concatenate([np.concatenate([self._encode_observation(idx + ii)[np.newaxis, :] for ii in range(1)], 0)[np.newaxis, :] for idx in indices], axis=0)
data_dict['act_batch'] = np.concatenate([self.action[idx: idx+self.args.pred_step, :][np.newaxis, :] for idx in indices], axis=0)
data_dict['sp_batch'] = np.concatenate([self.speed[idx: idx+self.args.pred_step+1][np.newaxis, :] for idx in indices], axis=0)
data_dict['prev_action'] = np.concatenate([self.action[idx-self.args.frame_history_len + 1: idx, :][np.newaxis, :] for idx in indices], axis=0)
data_dict['seg_batch'] = np.concatenate([self.seg[idx: idx+self.args.pred_step+1, :][np.newaxis, :] for idx in indices], axis=0)
if self.args.use_collision:
data_dict['coll_batch'] = np.concatenate([self.collision[idx+1: idx + self.args.pred_step + 1][np.newaxis, :] for idx in indices], axis=0)
data_dict['coll_other_batch'] = np.concatenate([self.collision_other[idx+1: idx + self.args.pred_step + 1][np.newaxis, :] for idx in indices], axis=0)
data_dict['coll_vehicles_batch'] = np.concatenate([self.collision_vehicles[idx+1: idx + self.args.pred_step + 1][np.newaxis, :] for idx in indices], axis=0)
if self.args.use_offroad:
data_dict['offroad_batch'] = np.concatenate([self.offroad[idx+1: idx + self.args.pred_step + 1][np.newaxis, :] for idx in indices], axis=0)
if self.args.use_offlane:
data_dict['offlane_batch'] = np.concatenate([self.offlane[idx+1: idx + self.args.pred_step + 1][np.newaxis, :] for idx in indices], axis=0)
if self.args.use_depth:
data_dict["depth_batch"] = np.concatenate([self.depth[idx: idx+self.args.pred_step+1, :][np.newaxis, :] for idx in indices], axis=0)
if self.args.use_detection:
bboxes_batch = np.zeros([len(indices), self.args.pred_step+1, self.anchor_num, 4], dtype=np.float16)
cls_batch = np.zeros([len(indices), self.args.pred_step+1, self.anchor_num], dtype=np.int8)
colls_with_batch = np.zeros([len(indices), self.args.pred_step+1, self.anchor_num], dtype=np.int8)
# coll_with_batch = np.zeros([len(indices), self.args.pred_step+1, self.anchor_num], dtype=np.int8)
original_bboxes_batch = []
for i in range(len(indices)):
original_bboxes = []
idx = indices[i]
for j in range(self.args.pred_step + 1):
bboxes = np.array(self.bboxes[idx + j])
labels = np.array(self.bboxes_cls[idx + j])
colls_with = np.array(self.colls_with[idx + j])
bboxes_orientations = np.array([self.bboxes[idx + j][u] for u in range(len(self.bboxes[idx + j]))])
original_bboxes.append(bboxes_orientations)
if bboxes.shape[0] == 0:
bboxes_batch[i, j, :, :4] = 0
cls_batch[i, j, :] = -1
colls_with_batch[i, j, :] = -1
else:
bboxes = torch.Tensor(bboxes)
labels = torch.Tensor(labels)
bboxes_batch[i, j, :, :4], cls_batch[i, j, :], colls_with_batch[i, j, :] = self.bbox_encoder.encode(bboxes, labels, colls_with, input_size=(self.args.frame_width, self.args.frame_height))
original_bboxes_batch.append(original_bboxes)
data_dict['bboxes_batch'] = bboxes_batch
data_dict['cls_batch'] = cls_batch
data_dict['colls_with_batch'] = colls_with_batch
data_dict['original_bboxes'] = original_bboxes_batch
return data_dict
def decode_bbox(self, loc_preds, cls_preds, batchsize):
return self.bbox_encoder.decode(loc_preds, cls_preds, input_size=(self.args.frame_width, self.args.frame_height), batchsize=batchsize)
def decode_one(self, loc_preds, cls_preds, inputsize):
return self.bbox_encoder.decode_one(loc_preds, cls_preds, inputsize)
def sample(self, batch_size):
assert self.can_sample(batch_size)
indices = self.sample_n_unique(lambda: random.randint(10, self.num_in_buffer - 10), batch_size)
return self._encode_sample(indices)
def _encode_observation(self, idx):
start_idx = idx - self.args.frame_history_len + 1
end_idx = idx + 1
assert start_idx >= 0 and end_idx <= min(self.num_in_buffer, self.args.buffer_size) and np.sum(self.done[start_idx: end_idx]) == 0
encoded_obs = self.obs[start_idx: end_idx].reshape(-1, self.args.frame_height, self.args.frame_width)
return encoded_obs
def store_frame(self, obs, collision, collision_other, collision_vehicles, coll_with, offroad, offlane, speed, seg, bboxes, depth):
# as the convention in opencv, we operate and store image in CxHxW format
frame = obs.transpose(2, 0, 1) # reshape as [C, H, W]
if self.obs is None:
self.obs = np.empty([self.args.buffer_size, 3, self.args.frame_height, self.args.frame_width], dtype=np.uint8)
self.action = np.empty([self.args.buffer_size, self.args.num_total_act], dtype=np.float16)
self.done = np.empty([self.args.buffer_size], dtype=np.int8)
self.expert = np.empty([self.args.buffer_size], dtype=np.float16)
self.guide_action = np.empty([self.args.buffer_size], dtype=np.int8)
self.collision = np.empty([self.args.buffer_size], dtype=np.int8)
self.collision_other = np.empty([self.args.buffer_size], dtype=np.int8)
self.collision_vehicles = np.empty([self.args.buffer_size], dtype=np.int8)
self.offroad = np.empty([ self.args.buffer_size], dtype=np.int8)
self.offlane = np.empty([self.args.buffer_size], dtype=np.int8)
self.speed = np.empty([self.args.buffer_size], dtype=np.float16)
self.seg = np.empty([self.args.buffer_size, self.args.frame_height, self.args.frame_width], dtype=np.uint8)
self.depth = np.empty([self.args.buffer_size, self.args.frame_height, self.args.frame_width], dtype=np.float16)
# because the ground truth bboxes number varies in different frames, we can't allocate a numpyarray to hold them
self.bboxes = [[] for i in range(self.args.buffer_size)]
# self.directions = [[] for i in range(self.args.buffer_size)]
self.bboxes_cls = [[] for i in range(self.args.buffer_size)]
self.colls_with = [[] for i in range(self.args.buffer_size)]
self.obs[self.next_idx] = frame
self.collision[self.next_idx] = int(collision)
self.collision_other[self.next_idx] = int(collision_other)
self.collision_vehicles[self.next_idx] = int(collision_vehicles)
self.offroad[self.next_idx] = int(offroad)
self.offlane[self.next_idx] = int(offlane)
self.speed[self.next_idx] = speed
self.seg[self.next_idx, :] = seg
self.depth[self.next_idx, :] = depth
if self.args.use_detection:
labels = [0 for i in range(len(bboxes))] # curently we only detect the vehicles
self.bboxes[self.next_idx] = bboxes
# self.directions[self.next_idx] = directions
self.bboxes_cls[self.next_idx] = labels
self.colls_with[self.next_idx] = list(coll_with)
self.last_idx = self.next_idx
self.next_idx = (self.next_idx + 1) % self.args.buffer_size
self.num_in_buffer = min(self.args.buffer_size, self.num_in_buffer + 1)
gc.collect()
def store_action(self, guide_action, action, done):
self.guide_action[self.last_idx] = guide_action
self.action[self.last_idx, :] = action
self.done[self.last_idx] = int(done)
'''
# this function is replaced by the two buffer classes in manager.py
def get_history(self, target):
if target == 'action':
target_buffer = self.action
his_len = self.args.frame_history_len - 1
elif target == 'obs':
target_buffer = self.obs
his_len = self.args.frame_history_len
else:
assert(0)
if self.num_in_buffer < his_len:
# no enough history stored in the buffer
history_seq = [target_buffer[self.last_idx] for i in range(his_len)]
else:
history_seq = []
for i in range(his_len):
idx = self.last_idx - (his_len - 1) + i
idx = self.num_in_buffer + idx if idx < 0 else idx
history_seq.append(target_buffer[idx])
return np.concatenate(history_seq, 0)[np.newaxis, ]
'''
def load(self, path):
if self.args.eval:
print('not load spc buffers in eval mode...')
return
spc_path = os.path.join(self.args.save_path, 'spc_checkpoint')
if os.path.exists(spc_path):
print('load the spcbuffer checkpoint ...')
file_list = os.listdir(spc_path)
for filename in file_list:
if filename[-4:] == '.npy':
name = filename[:-4]
filepath = os.path.join(spc_path, filename)
self.__dict__[name] = np.load(filepath)
if filename == 'others.json':
filepath = os.path.join(spc_path, filename)
var_dict = json.load(open(filepath, 'r'))
for key in var_dict:
self.__dict__[key] = var_dict[key]
print("successfully load the spcbuffer checkpoint")
def save(self, path):
# In case the whole class is too large to save, we independently save different components
spc_path = os.path.join(self.args.save_path, 'spc_checkpoint')
if not os.path.isdir(spc_path):
os.makedirs(spc_path)
save_dict = {}
for key in self.__dict__.keys():
component = self.__dict__[key]
if type(component) == np.ndarray:
np.save(os.path.join(spc_path, '{}.npy'.format(key)), component)
elif key == "bboxes":
bboxes = np.array(component)
np.save(os.path.join(spc_path, '{}.npy'.format(key)), component)
elif type(component) == int or type(component) == list:
# import pdb; pdb.set_trace()
save_dict[key] = component
with open(os.path.join(spc_path, 'others.json'), 'w') as f:
try:
json.dump(save_dict, f)
except:
import pdb; pdb.set_trace()