-
Notifications
You must be signed in to change notification settings - Fork 0
/
training_benchmark.py
381 lines (333 loc) · 14.9 KB
/
training_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import logging
import sys
# Set logging configs
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] %(levelname)s - %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p',
handlers=[logging.StreamHandler(stream=sys.stdout)]
)
logging.getLogger('numexpr').setLevel(logging.WARNING)
import argparse
import os
import time
from functools import partial
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.distributed import broadcast
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup
from datasets import load_dataset, concatenate_datasets
from datasets.utils.logging import disable_progress_bar
disable_progress_bar()
import evaluate
from accelerate import Accelerator
from utils import shift_bit_length
from numpy import average
MAX_EVAL_BATCH_SIZE = 4096
train_times = []
eval_times = []
compute_metric_times = []
broadcast_times = []
def tokenize_function(examples, tokenizer):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["text"], truncation=True)
return outputs
def collate_fn(examples, tokenizer, pad_to_multiple_of):
return tokenizer.pad(
examples,
padding="longest",
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
def training_function(args):
################ Initialize accelerator ################
if args.with_tracking:
accelerator = Accelerator(
mixed_precision=args.mixed_precision, log_with="all", logging_dir=args.logging_dir
)
else:
accelerator = Accelerator(mixed_precision=args.mixed_precision)
########################################################
############# Resume training sanity check #############
if hasattr(args.checkpointing_steps, "isdigit"):
if args.checkpointing_steps == "epoch":
checkpointing_steps = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
raise ValueError(
f"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed."
)
else:
checkpointing_steps = None
########################################################
######### Load tokenizer, datasets and metrics #########
path_to_model = os.path.join(os.environ["HF_LOCAL_HOME"], "models", args.model_name)
path_to_dataset = os.path.join(os.environ["HF_LOCAL_HOME"], "datasets", args.dataset)
path_to_metric = os.path.join(os.environ["HF_LOCAL_HOME"], "metrics", "accuracy.py") # TODO: Add more metrics. https://github.com/huggingface/evaluate/pull/150
tokenizer = AutoTokenizer.from_pretrained(path_to_model)
datasets = load_dataset(path_to_dataset)
metric = evaluate.load(path_to_metric, process_id = int(os.environ["RANK"]), num_process= int(os.environ["WORLD_SIZE"]), experiment_id="slurm")
########################################################
################# Preprocess datasets ##################
# Starting with the main process first to exploit HF cache:
with accelerator.main_process_first():
tokenized_datasets = datasets.map(
tokenize_function,
fn_kwargs = {"tokenizer": tokenizer},
batched=True,
batch_size = None,
remove_columns=["text"],
)
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# Multiply trainind and evaluation data.
# For benchmarks we will have the same number of samples in all the runs
# 32768 for train and 131072 for evaluation
# So in the case with 256 batch size, each device of the 4 nodes will have 8 batches for training
# and in a evaluation with eval batch size of 4096, every device will have 2 batches
tokenized_datasets["train"] = tokenized_datasets["train"].select(range(8192))
tokenized_datasets["train"] = concatenate_datasets([tokenized_datasets["train"] for _ in range(4)])
tokenized_datasets["validation"] = tokenized_datasets["validation"].select(range(1024))
tokenized_datasets["validation"] = concatenate_datasets([tokenized_datasets["validation"] for _ in range(2*64)])
########################################################
############### Training hyperparameters ###############
lr = args.learning_rate
num_epochs = int(args.num_epochs)
train_size = len(tokenized_datasets["train"])
eval_size = len(tokenized_datasets["validation"])
batch_size = int(args.batch_size)
# If not specified, autocompute eval_batch_size. 1 batch per device
if args.eval_batch_size is None:
eval_batch_size = shift_bit_length(eval_size/int(os.environ["WORLD_SIZE"]))
if eval_batch_size > MAX_EVAL_BATCH_SIZE:
eval_batch_size = MAX_EVAL_BATCH_SIZE
else:
eval_batch_size = int(args.eval_batch_size)
########################################################
############# Initialize trackers with HPs #############
if args.with_tracking:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run, args)
########################################################
########## Instantiate dataloaders, model, optimizers and schedulers ##########
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True,
collate_fn=partial(collate_fn, tokenizer = tokenizer, pad_to_multiple_of = pad_to_multiple_of),
batch_size=batch_size
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"], shuffle=False,
collate_fn=partial(collate_fn, tokenizer = tokenizer, pad_to_multiple_of = pad_to_multiple_of),
batch_size=eval_batch_size
)
num_labels = tokenized_datasets["train"].features["labels"].num_classes
model = AutoModelForSequenceClassification.from_pretrained(path_to_model, num_labels = num_labels, return_dict=True)
optimizer = AdamW(params=model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=(len(train_dataloader) * num_epochs),
)
###############################################################################
########## Prepare everything with Accelerate ##########
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
########################################################
########## Load weights and states from previous save ##########
# We need to keep track of how many total steps we have iterated over
overall_step = 0
# We also need to keep track of the stating epoch so files are named properly
starting_epoch = 0
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
else:
resume_step = int(training_difference.replace("step_", ""))
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
##############################################################
####################### Training #######################
ft0 = time.time()
accuracy_tensor = torch.empty(1).cuda() # Tensor to allocate broadcasted accuracy
for epoch in range(starting_epoch, num_epochs):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
overall_step += resume_step
t0 = time.time()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(checkpointing_steps, int):
if overall_step % checkpointing_steps == 0:
output_dir = f"step_{overall_step}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
train_times.append(time.time()-t0)
###################### Evaluation ######################
model.eval()
e0 = time.time()
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=predictions,
references=references,
)
eval_times.append(time.time()-e0)
c0 = time.time()
eval_metric = metric.compute()
compute_metric_times.append(time.time()-c0)
########################################################
###################### Broadcast #######################
if accelerator.is_main_process:
accuracy_tensor = torch.Tensor([eval_metric['accuracy']]).cuda()
accelerator.wait_for_everyone()
b0 = time.time()
broadcast(accuracy_tensor, 0)
broadcast_times.append(time.time()-b0)
########################################################
if args.with_tracking:
# TODO Handle multiple metrics dict
accelerator.log(
{
"accuracy": eval_metric["accuracy"],
# "f1": eval_metric["f1"],
"train_loss": total_loss.item() / len(train_dataloader),
"epoch": epoch,
},
step=epoch,
)
if checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.with_tracking:
accelerator.end_training()
########################################################
full_training_time = time.time()-ft0
if accelerator.is_main_process:
logging.info(f"Training finished!")
logging.info(f"Complete training Time: {full_training_time} s")
logging.info(f"[{int(os.environ['RANK'])}] Training iteration: {average(train_times)} s")
logging.info(f"[{int(os.environ['RANK'])}] Evaluation iteration: {average(eval_times)} s")
logging.info(f"[{int(os.environ['RANK'])}] Compute metric: {average(compute_metric_times)} s")
logging.info(f"[{int(os.environ['RANK'])}] Training Throughput: {(train_size*num_epochs/int(os.environ['WORLD_SIZE']))/sum(train_times):.2f} samples/second")
logging.info(f"[{int(os.environ['RANK'])}] Eval Throughput: {(eval_size*num_epochs/int(os.environ['WORLD_SIZE']))/sum(eval_times):.2f} samples/second")
accelerator.wait_for_everyone()
logging.info(f"[{int(os.environ['RANK'])}] Broadcast: {average(broadcast_times)*1000} ms/broadcast")
def main():
parser = argparse.ArgumentParser(description="Simple example of training script.")
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
parser.add_argument(
"--output_dir",
type=str,
default=".",
help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help="Location on where to store experiment tracking logs.",
)
parser.add_argument(
"--batch_size",
type=int,
default=256,
help="Batch size for training per device. Global batch size is batch_size * num_devices."
)
parser.add_argument(
"--eval_batch_size",
type=int,
default=512,
help="Batch size for evaluation per device. Global batch size is batch_size * num_devices."
)
parser.add_argument(
"--num_epochs",
type=int,
default=5,
help="Number of epochs"
)
parser.add_argument(
"--model_name",
type=str,
default="distilbert-base-uncased",
help="Model name from Hugging Face.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-4,
help="Learning rate."
)
parser.add_argument(
"--dataset",
type=str,
default="emotion",
help="Dataset name from Hugging Face.",
)
args, _ = parser.parse_known_args()
training_function(args)
if __name__ == "__main__":
main()