-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypto.go
200 lines (164 loc) · 4.78 KB
/
crypto.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
Copyright © 2022-2025 Thomas von Dein
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package main
import (
"crypto/cipher"
cryptorand "crypto/rand"
"errors"
"fmt"
"io"
"math/big"
mathrand "math/rand"
"os"
"time"
"unsafe"
"golang.org/x/crypto/argon2"
chapo "golang.org/x/crypto/chacha20poly1305"
)
const (
SaltSize = 32 // in bytes
NonceSize = 24 // in bytes. taken from aead.NonceSize()
KeySize = uint32(32) // KeySize is 32 bytes (256 bits).
KeyTime = uint32(5)
KeyMemory = uint32(1024 * 64) // KeyMemory in KiB. here, 64 MiB.
KeyThreads = uint8(4)
chunkSize = 1024 * 32 // chunkSize in bytes. here, 32 KiB.
letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890-"
letterIdxBits = 6 // 6 bits to represent a letter index
letterIdxMask = 1<<letterIdxBits - 1 // All 1-bits, as many as letterIdxBits
letterIdxMax = 63 / letterIdxBits // # of letter indices fitting in 63 bits
)
// via https://gist.github.com/dopey/c69559607800d2f2f90b1b1ed4e550fb
func AssertAvailablePRNG() {
// Assert that a cryptographically secure PRNG is available.
// Panic otherwise.
buf := make([]byte, 1)
_, err := io.ReadFull(cryptorand.Reader, buf)
if err != nil {
panic(fmt.Sprintf("crypto/rand is unavailable: Read() failed with %#v", err))
}
}
// GenerateRandomBytes returns securely generated random bytes.
// It will return an error if the system's secure random
// number generator fails to function correctly, in which
// case the caller should not continue.
func GenerateSecureRandomBytes(n int) ([]byte, error) {
b := make([]byte, n)
_, err := cryptorand.Read(b)
// Note that err == nil only if we read len(b) bytes.
if err != nil {
return nil, err
}
return b, nil
}
// GenerateRandomString returns a securely generated random string.
// It will return an error if the system's secure random
// number generator fails to function correctly, in which
// case the caller should not continue.
func GenerateSecureRandomString(n int) (string, error) {
ret := make([]byte, n)
for i := 0; i < n; i++ {
num, err := cryptorand.Int(cryptorand.Reader, big.NewInt(int64(len(letters))))
if err != nil {
return "", err
}
ret[i] = letters[num.Int64()]
}
return string(ret), nil
}
// via:
// https://stackoverflow.com/a/31832326
func GenerateMathRandomString(n int) string {
b := make([]byte, n)
var src = mathrand.NewSource(time.Now().UnixNano())
// A src.Int63() generates 63 random bits, enough for letterIdxMax characters!
for i, cache, remain := n-1, src.Int63(), letterIdxMax; i >= 0; {
if remain == 0 {
cache, remain = src.Int63(), letterIdxMax
}
if idx := int(cache & letterIdxMask); idx < len(letters) {
b[i] = letters[idx]
i--
}
cache >>= letterIdxBits
remain--
}
return *(*string)(unsafe.Pointer(&b))
}
func GetRandomKey() ([]byte, error) {
password, err := GenerateSecureRandomBytes(int(chapo.KeySize))
if err != nil {
return nil, err
}
salt, err := GenerateSecureRandomBytes(chapo.NonceSizeX)
if err != nil {
return nil, err
}
key := argon2.IDKey(password, salt, KeyTime, KeyMemory, KeyThreads, chapo.KeySize)
return key, nil
}
func Encrypt(c *Conf, filename string) error {
info, err := os.Stat(filename)
if err != nil {
return err
}
size := info.Size()
outfile, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE, 0666)
if err != nil {
return err
}
defer outfile.Close()
key, err := GetRandomKey()
if err != nil {
return err
}
aead, err := chapo.NewX(key)
if err != nil {
return err
}
for i := 0; i < c.count; i++ {
for {
if size < chunkSize {
if err := EncryptChunk(aead, outfile, size); err != nil {
return err
}
break
}
if err := EncryptChunk(aead, outfile, chunkSize); err != nil {
return err
}
size = size - chunkSize
if size <= 0 {
break
}
}
}
return nil
}
func EncryptChunk(aead cipher.AEAD, file *os.File, size int64) error {
chunk := make([]byte, size)
nonce, err := GenerateSecureRandomBytes(int(chapo.NonceSizeX))
if err != nil {
return err
}
cipher := aead.Seal(nil, nonce, chunk, nil)
n, err := file.Write(cipher[:size])
if err != nil {
return err
}
if int64(n) != size {
return errors.New("invalid number of bytes written")
}
return nil
}