Parameter | Kursinformationen |
---|---|
Veranstaltung: | @config.lecture |
Semester | @config.semester |
Hochschule: | Technische Universität Freiberg |
Inhalte: | Realisierung von Schaltnetzen, Standardschaltnetze |
Link auf GitHub: | https://github.com/TUBAF-IfI-LiaScript/VL_EingebetteteSysteme/blob/master/05_Standardschaltnetze.md |
Autoren | @author |
** Fragen an die Veranstaltung**
- Unterscheiden Sie Multiplexer und Demultiplexer.
- Wie lassen sich mit einem Multiplexer beliebige Wahrheitstafeln abbilden? Welche Grenzen hat dieser Ansatz?
- Welche Aufgaben realisieren Dekoder?
- Nennen Sie Anwendungsbeispiele für einen Multiplexer.
Abstraktionsebenen
+----------------------------+ -.
Ebene 6 | Problemorientierte Sprache | |
+----------------------------+ |
⎬ Anwendungssoftware
+----------------------------+ |
Ebene 5 | Assemblersprache | |
+----------------------------+ -.
+----------------------------+
Ebene 4 | Betriebssystem | Systemsoftware
+----------------------------+
+----------------------------+
Ebene 3 | Instruktionsset | Maschinensprache
+----------------------------+
+----------------------------+ -.
Ebene 2 | Mikroarchitektur | |
+----------------------------+ |
⎬ Automaten, Speicher, Logik
+----------------------------+ | ╔═══════════════╗
Ebene 1 | Digitale Logik | | ◀══║ HIER SIND WIR!║
+----------------------------+ -. ╚═══════════════╝
+----------------------------+
Ebene 0 | E-Technik, Physik | Analoge Phänomene
+----------------------------+ .
In der digitalen Elektronik ist ein Binärdecoder eine kombinatorische Logikschaltung, die binäre Informationen von den
Dekodierer Kodierer
+ +
/| ...............> |\
/ | ---------------> | \
+ | ---------------> | +
Input --> | | ---------------> | | ---> Output
--> | | ---------------> | | --->
--> | | ---------------> | | --->
+ | ---------------> | +
\ | ---------------> | /
\| ---------------> |/
+ + .
So kann z.B. ein abgewandeltes NOT Gatter als 1:2-Binärdecoder mit 1-Eingang und 2-Ausgänge klassifiziert werden, da er mit einem Eingang A zwei Ausgänge
3-8 Dekodierer
... | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ... |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | ... |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | ... |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | ... |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ... |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ... |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ... |
Für jede Eingangskombination wird genau 1 Ausgang aktiviert.
{"devices":{"a":{"label":"A","type":"Button","propagation":0,"position":{"x":-90,"y":65}},"b":{"label":"B","type":"Button","propagation":0,"position":{"x":-90,"y":115}},"c":{"label":"C","type":"Button","propagation":0,"position":{"x":-100,"y":210}},"y0":{"label":"y0","type":"Lamp","propagation":0,"position":{"x":590,"y":45}},"y1":{"label":"y1","type":"Lamp","propagation":0,"position":{"x":590,"y":105}},"y2":{"label":"y2","type":"Lamp","propagation":0,"position":{"x":595,"y":175}},"y3":{"label":"y3","type":"Lamp","propagation":0,"position":{"x":590,"y":230}},"y4":{"label":"y4","type":"Lamp","propagation":0,"position":{"x":595,"y":285}},"y5":{"label":"y5","type":"Lamp","propagation":0,"position":{"x":590,"y":345}},"y6":{"label":"y6","type":"Lamp","propagation":0,"position":{"x":595,"y":415}},"y7":{"label":"y7","type":"Lamp","propagation":0,"position":{"x":595,"y":480}},"notA":{"label":"NOT a","type":"Not","propagation":0,"bits":1,"position":{"x":55,"y":90}},"notB":{"label":"NOT b","type":"Not","propagation":0,"bits":1,"position":{"x":40,"y":165}},"notC":{"label":"NOT c","type":"Not","propagation":0,"bits":1,"position":{"x":35,"y":375}},"and1":{"label":"~A and ~B","type":"And","propagation":0,"bits":1,"position":{"x":230,"y":95}},"and2":{"label":"~A and B","type":"And","propagation":0,"bits":1,"position":{"x":230,"y":195}},"and3":{"label":"A and ~B","type":"And","propagation":0,"bits":1,"position":{"x":235,"y":290}},"and4":{"label":"A and B","type":"And","propagation":0,"bits":1,"position":{"x":230,"y":410}},"and5":{"label":"~A and ~B and ~C","type":"And","propagation":0,"bits":1,"position":{"x":420,"y":40}},"and6":{"label":"~A and ~B and C","type":"And","propagation":0,"bits":1,"position":{"x":430,"y":100}},"and7":{"label":"~A and B and ~C","type":"And","propagation":0,"bits":1,"position":{"x":435,"y":170}},"and8":{"label":"~A and B and C","type":"And","propagation":0,"bits":1,"position":{"x":440,"y":225}},"and9":{"label":"A and ~B and ~C","type":"And","propagation":0,"bits":1,"position":{"x":430,"y":280}},"and10":{"label":"A and ~B and C","type":"And","propagation":0,"bits":1,"position":{"x":430,"y":340}},"and11":{"label":"A and B and ~C","type":"And","propagation":0,"bits":1,"position":{"x":435,"y":410}},"and12":{"label":"A and B and C","type":"And","propagation":0,"bits":1,"position":{"x":445,"y":475}}},"connectors":[{"from":{"id":"a","port":"out"},"to":{"id":"notA","port":"in"}},{"from":{"id":"b","port":"out"},"to":{"id":"notB","port":"in"}},{"from":{"id":"c","port":"out"},"to":{"id":"notC","port":"in"}},{"from":{"id":"and1","port":"out"},"to":{"id":"and5","port":"in1"}},{"from":{"id":"and1","port":"out"},"to":{"id":"and6","port":"in1"}},{"from":{"id":"and2","port":"out"},"to":{"id":"and7","port":"in1"}},{"from":{"id":"and2","port":"out"},"to":{"id":"and8","port":"in1"}},{"from":{"id":"and3","port":"out"},"to":{"id":"and9","port":"in1"}},{"from":{"id":"and3","port":"out"},"to":{"id":"and10","port":"in1"}},{"from":{"id":"and4","port":"out"},"to":{"id":"and11","port":"in1"}},{"from":{"id":"and4","port":"out"},"to":{"id":"and12","port":"in1"}},{"from":{"id":"notA","port":"out"},"to":{"id":"and1","port":"in1"}},{"from":{"id":"notB","port":"out"},"to":{"id":"and1","port":"in2"}},{"from":{"id":"notA","port":"out"},"to":{"id":"and2","port":"in1"}},{"from":{"id":"b","port":"out"},"to":{"id":"and2","port":"in2"},"vertices":[{"x":130,"y":160}]},{"from":{"id":"a","port":"out"},"to":{"id":"and3","port":"in1"},"vertices":[{"x":10,"y":215}]},{"from":{"id":"notB","port":"out"},"to":{"id":"and3","port":"in2"}},{"from":{"id":"a","port":"out"},"to":{"id":"and4","port":"in1"},"vertices":[{"x":10,"y":225},{"x":155,"y":395}]},{"from":{"id":"b","port":"out"},"to":{"id":"and4","port":"in2"},"vertices":[{"x":130,"y":160}]},{"from":{"id":"c","port":"out"},"to":{"id":"and6","port":"in2"},"vertices":[{"x":295,"y":265}]},{"from":{"id":"notC","port":"out"},"to":{"id":"and5","port":"in2"},"vertices":[{"x":330,"y":335}]},{"from":{"id":"c","port":"out"},"to":{"id":"and8","port":"in2"},"vertices":[{"x":310,"y":275}]},{"from":{"id":"notC","port":"out"},"to":{"id":"and7","port":"in2"},"vertices":[{"x":330,"y":335},{"x":370,"y":295}]},{"from":{"id":"notC","port":"out"},"to":{"id":"and9","port":"in2"},"vertices":[{"x":335,"y":335}]},{"from":{"id":"notC","port":"out"},"to":{"id":"and11","port":"in2"},"vertices":[{"x":320,"y":345}]},{"from":{"id":"c","port":"out"},"to":{"id":"and10","port":"in2"}},{"from":{"id":"c","port":"out"},"to":{"id":"and12","port":"in2"},"vertices":[{"x":360,"y":370}]},{"from":{"id":"and5","port":"out"},"to":{"id":"y0","port":"in"}},{"from":{"id":"and6","port":"out"},"to":{"id":"y1","port":"in"}},{"from":{"id":"and7","port":"out"},"to":{"id":"y2","port":"in"}},{"from":{"id":"and8","port":"out"},"to":{"id":"y3","port":"in"}},{"from":{"id":"and9","port":"out"},"to":{"id":"y4","port":"in"}},{"from":{"id":"and10","port":"out"},"to":{"id":"y5","port":"in"}},{"from":{"id":"and11","port":"out"},"to":{"id":"y6","port":"in"}},{"from":{"id":"and12","port":"out"},"to":{"id":"y7","port":"in"}}],"subcircuits":{}}
Adressdekoder
Adressbus [A_2, A_3 ...]
+---------------------------------------------------------+
| |
---------+ +--------+ D_0 +--------------+ |
A_0 | -------->| A |-------->|cs Mem 0 |<------+
| | | +--------------+ |
A_1 | -------->| B | : |
| | | D_1 +--------------+ |
| Adress- | |-------->|cs Mem 1 |<------+
| bus | | +--------------+ |
Mikro | | 2-zu-4 | : |
prozessor| | Dekoder| D_2 +--------------+ |
| | |-------->|cs Mem 2 |<------+
| | | +--------------+ |
| | | : |
| | | D_3 +--------------+ |
| | |-------->|cs Mem 3 |<------+
---------+ +--------+ +--------------+
: : cs = Chip Select
...........................................
Datenbus
BCD Dekoder für 7 Segmentanzeige
const int PINS[] = {0, 1, 2, 3, 4, 5, 6};
const int PAUSE = 1000;
byte segDigits[10][8] = {
{ 1,1,1,1,1,1,1,0 }, // = 0
{ 0,1,1,0,0,0,0,0 }, // = 1
{ 1,1,0,1,1,1,0,1 }, // = 2
{ 1,1,1,1,1,0,0,1 }, // = 3
{ 0,1,1,0,0,0,1,1 }, // = 4rtragen Sie die Funktion in ein Karnaugh-Veitch-Di
};
void setup() {
for(int i=0;i<8;i++){
pinMode(PINS[i], OUTPUT);
}
}
void loop() {
for (int count = 0; count <=9; ++count) {
for(int i=0; i<10; i++) {
digitalWrite(PINS[i], segDigits[count][i]);
}
delay(PAUSE);
}
}
@AVR8js.sketch
Verschaltung von Dekodern
Realisierung eines 4-zu-16 Dekoders auf der Basis von zwei 3-zu-8 Dekodern
3-zu-8 Dekoder
+----------+
A ------------>| 2^0 0|----> 0
B ------------>| 2^1 1|----> 1
C ------------>| 2^2 2|----> 2
D --+ | 3|----> 3
| |\ | 4|----> 4
+--+ o---->| EN 5|----> 5
| |/ | 6|----> 6
| | 7|----> 7
| +----------+
|
| +----------+
| A ->| 2^0 0|----> 8
| B -->| 2^1 1|----> 9
| C--->| 2^2 2|----> 10
| | 3|----> 11
| | 4|----> 12
+--------->| EN 5|----> 13
| 6|----> 14
| 7|----> 15
+----------+ .
- n Ausgänge
$y_0$ ,$y_1$ , ... ,$y_{n-1}$ -
$k = 2^n$ Eingänge$x_0$ ,$x_1$ , ... ,$x_{k-1}$ - nur genau eine Eingangsleitung darf auf 1 sein:
$x_i = 1$ ,$xj<>i = 0$
Jeder Eingangsleitung ist genau eine Kombination der möglichen Belegungen der Ausgangsleitungen zugeordnet, z.B. ihre binäre Repräsentation.
8-3 Kodierer
@blue(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | @blue(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | @blue(1) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | @blue(1) | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | @blue(1) | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | @blue(1) | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | @blue(1) | 0 | 1 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | @blue(1) | 1 | 1 | 1 |
Achtung: Die Wahrheitstafel ist unvollständig !
- Falsche Ausgangszustände sind möglich!
- Was passiert wenn alle Pegel 0 sind?
{"devices":{"x0":{"label":"x0","type":"Button","propagation":0,"position":{"x":0,"y":0}},"x1":{"label":"x1","type":"Button","propagation":0,"position":{"x":0,"y":50}},"x2":{"label":"x2","type":"Button","propagation":0,"position":{"x":0,"y":105}},"x3":{"label":"x3","type":"Button","propagation":0,"position":{"x":0,"y":160}},"x4":{"label":"x4","type":"Button","propagation":0,"position":{"x":0,"y":215}},"x5":{"label":"x5","type":"Button","propagation":0,"position":{"x":0,"y":265}},"x6":{"label":"x6","type":"Button","propagation":0,"position":{"x":0,"y":320}},"x7":{"label":"x7","type":"Button","propagation":0,"position":{"x":0,"y":375}},"y0":{"label":"y0","type":"Lamp","propagation":0,"position":{"x":570,"y":185}},"y1":{"label":"y1","type":"Lamp","propagation":0,"position":{"x":530,"y":210}},"y2":{"label":"y2","type":"Lamp","propagation":0,"position":{"x":485,"y":240}},"or1":{"label":"x1 or x3","type":"Or","propagation":0,"bits":1,"position":{"x":190,"y":80}},"or2":{"label":"x5 or x7","type":"Or","propagation":0,"bits":1,"position":{"x":195,"y":140}},"or3":{"label":"x1 or x3 or x5 or x7","type":"Or","propagation":0,"bits":1,"position":{"x":345,"y":120}},"or4":{"label":"x2 or x3","type":"Or","propagation":0,"bits":1,"position":{"x":200,"y":200}},"or5":{"label":"x6 or x7","type":"Or","propagation":0,"bits":1,"position":{"x":205,"y":290}},"or6":{"label":"x2 or x3 or x6 or x7","type":"Or","propagation":0,"bits":1,"position":{"x":350,"y":225}},"or7":{"label":"x4 or x5","type":"Or","propagation":0,"bits":1,"position":{"x":200,"y":360}},"or8":{"label":"x4 or x5 or x6 or x7","type":"Or","propagation":0,"bits":1,"position":{"x":360,"y":320}}},"connectors":[{"from":{"id":"x1","port":"out"},"to":{"id":"or1","port":"in1"}},{"from":{"id":"x3","port":"out"},"to":{"id":"or1","port":"in2"}},{"from":{"id":"x5","port":"out"},"to":{"id":"or2","port":"in1"},"vertices":[{"x":135,"y":170}]},{"from":{"id":"x7","port":"out"},"to":{"id":"or2","port":"in2"},"vertices":[{"x":145,"y":310}]},{"from":{"id":"x2","port":"out"},"to":{"id":"or4","port":"in1"}},{"from":{"id":"x3","port":"out"},"to":{"id":"or4","port":"in2"}},{"from":{"id":"x6","port":"out"},"to":{"id":"or5","port":"in1"},"vertices":[{"x":90,"y":335}]},{"from":{"id":"x7","port":"out"},"to":{"id":"or5","port":"in2"}},{"from":{"id":"x4","port":"out"},"to":{"id":"or7","port":"in1"},"vertices":[{"x":95,"y":290}]},{"from":{"id":"x5","port":"out"},"to":{"id":"or7","port":"in2"}},{"from":{"id":"or1","port":"out"},"to":{"id":"or3","port":"in1"}},{"from":{"id":"or2","port":"out"},"to":{"id":"or3","port":"in2"}},{"from":{"id":"or4","port":"out"},"to":{"id":"or6","port":"in1"}},{"from":{"id":"or5","port":"out"},"to":{"id":"or6","port":"in2"}},{"from":{"id":"or5","port":"out"},"to":{"id":"or8","port":"in1"}},{"from":{"id":"or7","port":"out"},"to":{"id":"or8","port":"in2"}},{"from":{"id":"or3","port":"out"},"to":{"id":"y0","port":"in"}},{"from":{"id":"or6","port":"out"},"to":{"id":"y1","port":"in"}},{"from":{"id":"or8","port":"out"},"to":{"id":"y2","port":"in"}}],"subcircuits":{}}
Prioritätsencoder
Abhilfe schafft der Prioritätsencoder. Hier wird eine explizite Auswahl für verschiedene Eingangskonfigurationen getroffen.
Bemerkung | ||||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | ungültig |
0 | 0 | 0 | 1 | 0 | 0 | |
0 | 0 | 1 | @gray(X) | 0 | 1 | |
0 | 1 | @gray(X) | @gray(X) | 1 | 0 | |
1 | @gray(X) | @gray(X) | @gray(X) | 1 | 1 |
Und im echten Leben? Kommen noch einige Spezialeingänge / -ausgänge dazu Link.
Aufgabe: Vereinfachen Sie die Funktionen für
$Q_2$ !
Analog Digitalwandler
Wir werden dem Encoder bei der Diskussion der Peripherie eines Mikrocontrollers sehr häufig wiederbegegnen. Das Video zeigt einen Anwendungsfall - das Mapping der Ergebnisse eines Analog-Digital-Wandlers auf eine binäre Ausgabe.
Eine Mulitplexerschaltung bildet analoge oder digitale Eingangssignale auf einen Kommunikationskanal ab, der Demultiplexer übernimmt die Abbildung auf n Ausgangsleitungen.
Multiplexer Demultiplexer
+ +
------> |\ /|------>
| \ / |
------> | + + |------>
| | ................>| |
------> | + + |------>
| / \ |
------> |/| |\|------>
+|| ||+
|| ||
"$a_0$ $a_1$" "$a_0$ $a_1$" .
Multiplexer | Dekoder |
---|---|
mehrere Eingänge, ein Ausgang | mehrere Eingänge, mehrere Ausgänge |
Steuerleitungen konfiguriereren die Weiterleitung | das Mapping wird durch die interne Logik bestimmt |
bildet den Pegel einer Eingangsleitung auf die Ausgangsleitung ab | wandelt den binären Code in einen unären Code um == aktiviert eine Ausgangsleitung |
Generelle Konfiguration eines 1-aus-k Multiplexer:
-
$n$ Steuerleitungen:$s_{n-1}, ... , s_1, s_0$ -
$k = 2^n$ Eingänge:$x_0, x_1, ... , x_{k-1}$ - ein Ausgang: y
-
$y = x_i$ für$(s_{n-1}, ... , s_1 , s_0)_2 = i$
Beispiel: 1-zu-4 Multiplexer
Eine Wahrheitstabelle mit 4 Eingangsvariablen und 2 Steuersignalen würde eine entsprechende Größe aufweisen. Allerdings kann die Funktion auch sehr einfach hergeleitet werden. Ein Inputsignal wird nur dann durchgeleitet, wenn die zugehörige Kombination von Steuersignalen anliegt.
Signal | ||
---|---|---|
0 | 0 | |
0 | 1 | |
1 | 0 | |
1 | 1 |
{"devices":{"a0":{"label":"a0","type":"Button","propagation":0,"position":{"x":-185,"y":10}},"a1":{"label":"a1","type":"Button","propagation":0,"position":{"x":-180,"y":-55}},"x0":{"label":"x0","type":"Button","propagation":0,"position":{"x":-185,"y":80}},"x1":{"label":"x1","type":"Button","propagation":0,"position":{"x":-185,"y":125}},"x2":{"label":"x2","type":"Button","propagation":0,"position":{"x":-185,"y":180}},"x3":{"label":"x3","type":"Button","propagation":0,"position":{"x":-185,"y":240}},"y":{"label":"y","type":"Lamp","propagation":0,"position":{"x":560,"y":180}},"not1":{"label":"~a0","type":"Not","propagation":0,"bits":1,"position":{"x":-95,"y":40}},"not2":{"label":"~a1","type":"Not","propagation":0,"bits":1,"position":{"x":-95,"y":-25}},"and1":{"label":"~a1 and ~a0","type":"And","propagation":0,"bits":1,"position":{"x":65,"y":40}},"and2":{"label":"~a1 and a0","type":"And","propagation":0,"bits":1,"position":{"x":55,"y":120}},"and3":{"label":"a1 and ~a0","type":"And","propagation":0,"bits":1,"position":{"x":65,"y":190}},"and4":{"label":"a1 and a0","type":"And","propagation":0,"bits":1,"position":{"x":70,"y":270}},"and5":{"label":"~a1 and ~a0 and x0","type":"And","propagation":0,"bits":1,"position":{"x":210,"y":55}},"and6":{"label":"~a1 and a0 and x1","type":"And","propagation":0,"bits":1,"position":{"x":210,"y":130}},"and7":{"label":"a1 and ~a0 and x2","type":"And","propagation":0,"bits":1,"position":{"x":210,"y":205}},"and8":{"label":"a1 and a0 and x3","type":"And","propagation":0,"bits":1,"position":{"x":210,"y":280}},"or1":{"label":"or","type":"Or","propagation":0,"bits":1,"position":{"x":420,"y":175}},"or2":{"label":"or","type":"Or","propagation":0,"bits":1,"position":{"x":360,"y":110}},"or3":{"label":"or","type":"Or","propagation":0,"bits":1,"position":{"x":360,"y":225}}},"connectors":[{"from":{"id":"a1","port":"out"},"to":{"id":"not2","port":"in"}},{"from":{"id":"a0","port":"out"},"to":{"id":"not1","port":"in"}},{"from":{"id":"not2","port":"out"},"to":{"id":"and1","port":"in1"}},{"from":{"id":"not1","port":"out"},"to":{"id":"and1","port":"in2"}},{"from":{"id":"a0","port":"out"},"to":{"id":"and2","port":"in2"},"vertices":[{"x":-75,"y":100}]},{"from":{"id":"a0","port":"out"},"to":{"id":"and4","port":"in2"},"vertices":[{"x":-15,"y":160}]},{"from":{"id":"not2","port":"out"},"to":{"id":"and2","port":"in1"},"vertices":[{"x":5,"y":85}]},{"from":{"id":"a1","port":"out"},"to":{"id":"and3","port":"in1"},"vertices":[{"x":-105,"y":10}]},{"from":{"id":"a1","port":"out"},"to":{"id":"and4","port":"in1"},"vertices":[{"x":-100,"y":25},{"x":-100,"y":55},{"x":30,"y":185}]},{"from":{"id":"not1","port":"out"},"to":{"id":"and3","port":"in2"},"vertices":[{"x":20,"y":100}]},{"from":{"id":"x0","port":"out"},"to":{"id":"and5","port":"in2"}},{"from":{"id":"and1","port":"out"},"to":{"id":"and5","port":"in1"}},{"from":{"id":"and2","port":"out"},"to":{"id":"and6","port":"in1"}},{"from":{"id":"and3","port":"out"},"to":{"id":"and7","port":"in1"}},{"from":{"id":"and4","port":"out"},"to":{"id":"and8","port":"in1"}},{"from":{"id":"x1","port":"out"},"to":{"id":"and6","port":"in2"},"vertices":[{"x":-45,"y":180},{"x":75,"y":180}]},{"from":{"id":"x2","port":"out"},"to":{"id":"and7","port":"in2"}},{"from":{"id":"x3","port":"out"},"to":{"id":"and8","port":"in2"},"vertices":[{"x":-20,"y":310}]},{"from":{"id":"and5","port":"out"},"to":{"id":"or2","port":"in1"}},{"from":{"id":"and6","port":"out"},"to":{"id":"or2","port":"in2"}},{"from":{"id":"and7","port":"out"},"to":{"id":"or3","port":"in1"}},{"from":{"id":"and8","port":"out"},"to":{"id":"or3","port":"in2"}},{"from":{"id":"or2","port":"out"},"to":{"id":"or1","port":"in1"}},{"from":{"id":"or3","port":"out"},"to":{"id":"or1","port":"in2"},"vertices":[{"x":420,"y":205}]},{"from":{"id":"or1","port":"out"},"to":{"id":"y","port":"in"}}],"subcircuits":{}}
Anwendung in Microcontrollern
Multiplexer als universelle boolesche Funktionsrepräsentation
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
Generelle Konfiguration eines 1-aus-k Multiplexer:
-
$n$ Steuerleitungen:$s_{n-1}, ... , s_1, s_0$ -
$k = 2^n$ Ausgänge:$y_0, y_1, ... , y_{k-1}$ - ein Eingang: x
-
$y = x_i$ für$(s_{n-1}, ... , s_1 , s_0)_2 = i$
Beispiel: 2 Bit Adresse -> 4 Ausgänge
0 | 0 | 0 | ||||
0 | 0 | 1 | 1 | |||
0 | 1 | 0 | ||||
0 | 1 | 1 | 1 | |||
1 | 0 | 0 | ||||
1 | 0 | 1 | 1 | |||
1 | 1 | 0 | ||||
1 | 1 | 1 | 1 |
{"devices":{"x":{"label":"x","type":"Button","propagation":0,"position":{"x":-50,"y":0}},"a0":{"label":"a0","type":"Button","propagation":0,"position":{"x":-45,"y":185}},"a1":{"label":"a1","type":"Button","propagation":0,"position":{"x":-50,"y":100}},"y0":{"label":"y0","type":"Lamp","propagation":0,"position":{"x":495,"y":15}},"y1":{"label":"y1","type":"Lamp","propagation":0,"position":{"x":495,"y":75}},"y2":{"label":"y2","type":"Lamp","propagation":0,"position":{"x":495,"y":130}},"y3":{"label":"y3","type":"Lamp","propagation":0,"position":{"x":500,"y":185}},"not1":{"label":"~a0","type":"Not","propagation":0,"bits":1,"position":{"x":85,"y":225}},"not2":{"label":"~a1","type":"Not","propagation":0,"bits":1,"position":{"x":45,"y":110}},"and1":{"label":"x and ~a1","type":"And","propagation":0,"bits":1,"position":{"x":150,"y":55}},"and2":{"label":"x and a1","type":"And","propagation":0,"bits":1,"position":{"x":160,"y":155}},"and3":{"label":"x and ~a1 and ~a0","type":"And","propagation":0,"bits":1,"position":{"x":345,"y":10}},"and4":{"label":"x and ~a1 and a0","type":"And","propagation":0,"bits":1,"position":{"x":345,"y":70}},"and5":{"label":"x and a1 and ~a0","type":"And","propagation":0,"bits":1,"position":{"x":345,"y":125}},"and6":{"label":"x and a1 and a0","type":"And","propagation":0,"bits":1,"position":{"x":350,"y":180}}},"connectors":[{"from":{"id":"not2","port":"out"},"to":{"id":"and1","port":"in2"}},{"from":{"id":"x","port":"out"},"to":{"id":"and1","port":"in1"}},{"from":{"id":"x","port":"out"},"to":{"id":"and2","port":"in1"},"vertices":[{"x":85,"y":75},{"x":110,"y":115}]},{"from":{"id":"and1","port":"out"},"to":{"id":"and3","port":"in1"}},{"from":{"id":"and1","port":"out"},"to":{"id":"and4","port":"in1"}},{"from":{"id":"and2","port":"out"},"to":{"id":"and5","port":"in1"},"vertices":[{"x":285,"y":135}]},{"from":{"id":"and2","port":"out"},"to":{"id":"and6","port":"in1"}},{"from":{"id":"not1","port":"out"},"to":{"id":"and3","port":"in2"},"vertices":[{"x":290,"y":225},{"x":290,"y":155}]},{"from":{"id":"not1","port":"out"},"to":{"id":"and5","port":"in2"},"vertices":[{"x":285,"y":200}]},{"from":{"id":"and3","port":"out"},"to":{"id":"y0","port":"in"}},{"from":{"id":"and4","port":"out"},"to":{"id":"y1","port":"in"}},{"from":{"id":"and5","port":"out"},"to":{"id":"y2","port":"in"}},{"from":{"id":"and6","port":"out"},"to":{"id":"y3","port":"in"}},{"from":{"id":"a1","port":"out"},"to":{"id":"not2","port":"in"}},{"from":{"id":"a1","port":"out"},"to":{"id":"and2","port":"in2"},"vertices":[{"x":35,"y":145},{"x":65,"y":185}]},{"from":{"id":"a0","port":"out"},"to":{"id":"not1","port":"in"}},{"from":{"id":"a0","port":"out"},"to":{"id":"and4","port":"in2"},"vertices":[{"x":305,"y":200}]},{"from":{"id":"a0","port":"out"},"to":{"id":"and6","port":"in2"}}],"subcircuits":{}}
... siehe Hausaufgabe
Nunmehr können boolesche Funktionen als Schaltnetze abbilden? Was fehlt für den Rechner? Zwei Dinge ... Speicher und arithmetische Operationen.
-
Entwerfen Sie einen Komperator, der zwei zweistellige Zahlen vergleicht. Definieren Sie dazu zunächst einen Ein-Bit Komperator und nutzen sie diesen als Grundlage für die Zwei-Bit-Variante
-
Entwickeln Sie ein Schaltnetz, dass die Teilbarkeit durch drei von einer 4-stelligen binären Zahl prüft. Stellen Sie dazu eine Wahrheitstafel auf, minimieren Sie den Ausdruck soweit wie möglich und skizzieren Sie die Verdrahtung der Gatter.
Wer möchte sich mit dem NE555 beschäftigen?
Footnotes
-
Autor: Always Be Positive, Youtube Video - Flash or Parallel ADC (Analog to Digital Converter) ↩