-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
145 lines (102 loc) · 4.88 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import pandas as pd
import json
from sklearn.metrics import f1_score
from datasets import load_dataset
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("submission", help="Absolute path to the folder with submission files in JSON format")
args = parser.parse_args()
submission_folder = args.submission
# Based on the dataset that is being evaluated, extract a list of true labels and a list of unique labels
def extract_true_label(dataset_name):
"""The function takes the dataset name and dataset dictionary and returns the list of true labels from the test split.
Args:
- dataset_name: should be "x-genre-test" or "en-ginco"
"""
# Load the dataset from the hugging face
if dataset_name == "x-genre-test":
test = load_dataset("TajaKuzman/X-GENRE-multilingual-text-genre-dataset", "test")
elif dataset_name == "en-ginco":
test = load_dataset("TajaKuzman/X-GENRE-multilingual-text-genre-dataset", "EN-GINCO")
test_df = pd.DataFrame(test["train"])
# Extract a list of unique labels
labels = list(test_df.labels.unique())
# Extract label list
y_true = test_df.labels.to_list()
return [y_true, labels]
#Calculate the scores
def testing(true, pred, labels):
"""
This function takes the list of true labels and list of predictions and evaluates the model based on comparing them.
It calculates micro and macro F1 scores.
Args:
- y_true: list of true labels
- y_pred: list of predicted labels
The function returns a dictionary with micro and macro F1.
"""
y_true = true
y_pred = pred
LABELS = labels
# Calculate the scores
macro = f1_score(y_true, y_pred, labels=LABELS, average="macro")
micro = f1_score(y_true, y_pred, labels=LABELS, average="micro")
#print(f"Macro f1: {macro:0.3}, Micro f1: {micro:0.3}")
return {"Micro F1":micro, "Macro F1": macro}
# Open the jsonl file with all results
with open("results/results.json", "r") as result_file:
results_list = json.load(result_file)
# Get paths to all the submission files
submission_files = os.listdir(submission_folder)
# Evaluate all submissions in the submissions directory
for submission_file in submission_files:
# Use only files that start with "submission"
if "submission-" in submission_file:
# Open the submission to be evaluated
with open("{}/{}".format(submission_folder,submission_file), "r") as sub_file:
results = json.load(sub_file)
# Get information on the dataset and the model
model = results["system"]
dataset_name = results["predictions"][0]["test"]
test_file = extract_true_label(dataset_name)
y_true = test_file[0]
labels = test_file[1]
# Extract information on arguments if they exist
try:
epochs = results["args"]["num_train_epochs"]
lr = results["args"]["learning_rate"]
except:
epochs = None
lr = None
# Extract predictions
y_pred = results["predictions"][0]["predictions"]
#print("Evaluation: {} on {}".format(model, dataset))
current_scores = testing(y_true, y_pred, labels)
current_res_dict = {"Model": model, "Test Dataset": dataset_name, "Macro F1": current_scores["Macro F1"], "Micro F1": current_scores["Micro F1"], "Epochs": epochs, "Learning Rate": lr}
# Add the results to all results
results_list.append(current_res_dict)
with open("results/results.json", "w") as new_result_file:
json.dump(results_list, new_result_file, indent = 2)
else:
print("Error: the following file `{}` is either not a submission file or is incorrectly named - see the `README.md` on how to prepare submission files.")
print("All evaluations completed. The results are added to the `results/results.json` file.")
# Create a dataframe from all results
result_df = pd.DataFrame(results_list)
# For each dataset, create a table with results
def results_table(result_df, dataset):
dataset_df = result_df[result_df["Test Dataset"] == dataset]
# Sort values based on highest Macro F1
dataset_df = dataset_df.sort_values(by="Macro F1", ascending=False)
# Round scores to 3 decimal places
dataset_df["Macro F1"] = dataset_df["Macro F1"].round(3)
dataset_df["Micro F1"] = dataset_df["Micro F1"].round(3)
print(dataset_df.to_markdown(index=False))
return dataset_df
for dataset in ["x-genre-test", "en-ginco"]:
print("New benchmark scores:\n")
current_df = results_table(result_df, dataset)
print("\n------------------------------------------\n")
# Save the table in markdown
with open("results/results-{}.md".format(dataset), "w") as result_file:
result_file.write(current_df.to_markdown(index=False))