forked from doubledaibo/gancaption_iccv2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgNoise.lua
330 lines (315 loc) · 11 KB
/
gNoise.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
require 'nn'
local misc = require 'utils.misc'
local netUtils = require 'utils.netUtils'
local LSTM = require 'gLSTM'
local layer, parent = torch.class('nn.G', 'nn.Module')
function layer:__init(opt)
parent.__init(self)
self.vocab_size = misc.getOpt(opt, 'vocab_size')
self.input_encoding_size = misc.getOpt(opt, 'input_encoding_size')
self.rnn_size = misc.getOpt(opt, 'rnn_size')
self.num_layers = misc.getOpt(opt, 'num_layers', 1)
self.dropout = misc.getOpt(opt, 'dropout', 0.5)
self.max_seq_length = misc.getOpt(opt, 'max_seq_length')
self.on_gpu = misc.getOpt(opt, 'gpuid', -1) >= 0
self.cnn_output_size = misc.getOpt(opt, 'cnn_output_size')
self.noise_size = misc.getOpt(opt, 'noise_size')
self.core = LSTM.lstm(self.input_encoding_size, self.vocab_size + 1, self.rnn_size, self.num_layers, self.dropout, false)
self.lookup_table = nn.LookupTable(self.vocab_size + 1, self.input_encoding_size)
self.proj = nn.Sequential()
self.proj:add(nn.JoinTable(2, 2))
self.proj:add(nn.Linear(self.cnn_output_size + self.noise_size, self.input_encoding_size))
self.proj:add(nn.ReLU(true))
self.sample_seq = torch.Tensor()
self.prob_seq = torch.Tensor()
self.zero_grad = torch.Tensor()
self.end_mask = torch.Tensor()
end
function layer:_createInitState(batch_size)
if not self.init_state then self.init_state = {} end
local times = 2
for h = 1, self.num_layers*times do
self.init_state[h] = torch.zeros(batch_size, self.rnn_size)
if self.on_gpu then
self.init_state[h] = self.init_state[h]:cuda()
end
end
self.num_state = #self.init_state
end
function layer:createClones()
print('constructing clones inside the G model')
self.clones = {self.core}
self.lookup_tables = {self.lookup_table}
for t = 2, self.max_seq_length + 2 do
self.clones[t] = self.core:clone('weight', 'bias', 'gradWeight', 'gradBias')
self.lookup_tables[t] = self.lookup_table:clone('weight', 'gradWeight')
end
end
function layer:getModulesList()
return {self.core, self.lookup_table, self.proj}
end
function layer:parameters()
local p1, g1 = self.core:parameters()
local p2, g2 = self.lookup_table:parameters()
local p3, g3 = self.proj:parameters()
local params = {}
for k, v in pairs(p1) do table.insert(params, v) end
for k, v in pairs(p2) do table.insert(params, v) end
for k, v in pairs(p3) do table.insert(params, v) end
local grad_params = {}
for k, v in pairs(g1) do table.insert(grad_params, v) end
for k, v in pairs(g2) do table.insert(grad_params, v) end
for k, v in pairs(g3) do table.insert(grad_params, v) end
return params, grad_params
end
function layer:training()
if self.clones == nil then self:createClones() end
for k, v in pairs(self.clones) do v:training() end
for k, v in pairs(self.lookup_tables) do v:training() end
self.proj:training()
end
function layer:evaluate()
if self.clones == nil then self:createClones() end
for k, v in pairs(self.clones) do v:evaluate() end
for k, v in pairs(self.lookup_tables) do v:evaluate() end
self.proj:evaluate()
end
function layer:updateOutput(input)
if self.clones == nil then self.createClones() end
local batch_size
local guidance = self.proj:forward(input[1]) --input[1] = {img, noise}
if #input == 2 then
batch_size = input[2]
else
batch_size = input[2]:size(2)
end
self.end_mask:resize(batch_size):fill(1)
self.zero_grad:resize(batch_size, self.vocab_size + 1):zero()
self.sample_seq:resize(self.max_seq_length + 1, batch_size):zero()
self.prob_seq:resize(self.max_seq_length + 1, batch_size, self.vocab_size + 1):zero()
local fix_num = 0
if #input == 3 then
fix_num = input[3]
if fix_num > 0 then self.sample_seq[{{1, fix_num}, {}}] = input[2][{{1, fix_num}, {}}] end
end
self:_createInitState(batch_size)
self.state = {[0] = self.init_state}
self.lookup_tables_inputs = {}
self.inputs = {}
self.tmax = 0
for t = 1, self.max_seq_length + 2 do
local xt, it, dummy
local can_skip = false
if t == 1 then
xt = guidance
elseif t == 2 then
it = torch.LongTensor(batch_size):fill(self.vocab_size + 1)
self.lookup_tables_inputs[t] = it
xt = self.lookup_tables[t]:forward(it)
else
it = self.sample_seq[t - 2]:clone()
if torch.sum(it) == 0 then
can_skip = true
else
it[torch.eq(it, 0)] = self.vocab_size + 1
self.lookup_tables_inputs[t] = it
xt = self.lookup_tables[t]:forward(it)
end
end
if not can_skip then
self.inputs[t] = {xt, unpack(self.state[t - 1])}
local out = self.clones[t]:forward(self.inputs[t])
if t > 1 then
self.prob_seq[t - 1] = out[self.num_state + 1]
if t - 1 > fix_num then
--sampling
it = torch.multinomial(out[self.num_state + 1], 1):view(-1)
it = torch.cmul(it, self.end_mask)
self.sample_seq[t - 1] = it:clone()
else
it = self.sample_seq[t - 1]:clone()
end
self.end_mask[torch.eq(it, self.vocab_size + 1)] = 0
self.tmax = t
end
self.state[t] = {}
for i = 1, self.num_state do table.insert(self.state[t], out[i]) end
else
break
end
end
self.output = {self.prob_seq, self.sample_seq}
return self.output
end
function layer:updateGradInput(input, gradOutput)
local dguidance
local dstate = {[self.tmax] = self.init_state}
for t = self.tmax, 1, -1 do
local dout = {}
for k = 1, self.num_state do table.insert(dout, dstate[t][k]) end
if t ~= 1 then
table.insert(dout, gradOutput[t - 1])
else
table.insert(dout, self.zero_grad)
end
local dinputs = self.clones[t]:backward(self.inputs[t], dout)
local dxt = dinputs[1]
if t ~= 1 then
dstate[t - 1] = {}
for k = 2, self.num_state + 1 do table.insert(dstate[t - 1], dinputs[k]) end
end
if t == 1 then
dguidance = dxt
else
local it = self.lookup_tables_inputs[t]
self.lookup_tables[t]:backward(it, dxt)
end
end
self.gradInput = self.proj:backward(input[1], dguidance)
return self.gradInput
end
function layer:sample(input, opt)
local temperature = misc.getOpt(opt, 'temperature', 1.0)
local epsilon = misc.getOpt(opt, 'epsilon', 0.5)
local guidance = self.proj:forward(input)
local batch_size, feat_dim = guidance:size(1), guidance:size(2)
self:_createInitState(batch_size)
local seq = torch.LongTensor(self.max_seq_length + 1, batch_size):zero()
local seq_log_probs = torch.FloatTensor(self.max_seq_length, batch_size)
local state = self.init_state
local log_probs
local end_mask = torch.LongTensor(batch_size):fill(1)
for t = 1, self.max_seq_length + 2 do
local xt, it, sample_log_probs
if t == 1 then
xt = guidance
elseif t== 2 then
it = torch.LongTensor(batch_size):fill(self.vocab_size + 1)
xt = self.lookup_table:forward(it)
else
local greedy = torch.rand(1)[1] < epsilon
if greedy then
sample_log_probs, it = torch.max(log_probs, 2)
it = it:view(-1):long()
else
local prob = torch.exp(torch.div(log_probs, temperature))
it = torch.multinomial(prob, 1)
sample_log_probs = log_probs:gather(2, it)
it = it:view(-1):long()
end
xt = self.lookup_table:forward(it)
end
if t >= 3 then
it = torch.cmul(it, end_mask)
sample_log_probs = sample_log_probs:view(-1):float()
sample_log_probs[torch.eq(end_mask, 0)] = 0
end_mask[torch.eq(it, self.vocab_size + 1)] = 0
seq[t - 2] = it
seq_log_probs[t - 2] = sample_log_probs
end
local inputs = {xt, unpack(state)}
local out = self.core:forward(inputs)
log_probs = torch.log(out[self.num_state + 1])
state = {}
for i = 1, self.num_state do table.insert(state, out[i]) end
end
seq[self.max_seq_length + 1][torch.eq(end_mask, 1)] = self.vocab_size + 1
return seq, seq_log_probs
end
function layer:sampleBeam(input, opt)
local function compare(a, b) return a.p > b.p end
local guidance = self.proj:forward(input)
local beam_size = misc.getOpt(opt, 'beam_size', 10)
local batch_size, feat_dim = guidance:size(1), guidance:size(2)
-- assert(beam_size <= self.vocab_size + 1)
local seq = torch.LongTensor(self.max_seq_length + 1, batch_size):zero()
local new_seq = torch.LongTensor(self.max_seq_length + 1, 1):zero()
local seq_log_probs = torch.FloatTensor(self.max_seq_length, batch_size)
self:_createInitState(beam_size)
local beam_seq = torch.LongTensor(self.max_seq_length, beam_size)
local beam_seq_log_probs = torch.FloatTensor(self.max_seq_length, beam_size)
local beam_log_probs_sum = torch.zeros(beam_size)
for k = 1, batch_size do
beam_seq:zero()
beam_seq_log_probs:zero()
beam_log_probs_sum:zero()
local state = self.init_state
local log_probs
local done_beams = {}
local max_row = 1
for t = 1, self.max_seq_length + 2 do
local xt, it, sample_log_probs
local new_state
if t == 1 then
local guidancek = guidance[{{k, k}}]:expand(beam_size, feat_dim)
xt = guidancek
elseif t == 2 then
it = torch.LongTensor(beam_size):fill(self.vocab_size + 1)
xt = self.lookup_table:forward(it)
else
local log_probs_f = log_probs:float()
local ys, ix = torch.sort(log_probs_f, 2, true)
local candidates = {}
local cols = math.min(beam_size + 1, ys:size(2))
local rows = max_row
for c = 1, cols do
for q = 1, rows do
-- if ix[{q, c}] ~= self.vocab_size then --Ignore UNK Token
local local_log_prob = ys[{q, c}]
local candidate_log_prob = beam_log_probs_sum[q] + local_log_prob
table.insert(candidates, {c = ix[{q, c}], q = q, p = candidate_log_prob, r = local_log_prob})
-- end
end
end
table.sort(candidates, compare)
new_state = netUtils.cloneList(state)
local beam_seq_prev, beam_seq_log_probs_prev
if t > 3 then
beam_seq_prev = beam_seq[{{1, t - 3}, {}}]:clone()
beam_seq_log_probs_prev = beam_seq_log_probs[{{1, t - 3}, {}}]:clone()
end
max_row = 0
for vix = 1, #candidates do
local v = candidates[vix]
local sv = max_row + 1
if t > 3 then
beam_seq[{{1, t - 3}, sv}] = beam_seq_prev[{{}, v.q}]
beam_seq_log_probs[{{1, t - 3}, sv}] = beam_seq_log_probs_prev[{{}, v.q}]
end
for state_ix = 1, #new_state do
new_state[state_ix][sv] = state[state_ix][v.q]
end
beam_seq[{t - 2, sv}] = v.c
beam_seq_log_probs[{t - 2, sv}] = v.r
beam_log_probs_sum[sv] = v.p
if v.c == self.vocab_size + 1 or t == self.max_seq_length + 2 then
new_seq:zero()
new_seq[{{1, self.max_seq_length}, {}}] = beam_seq[{{}, sv}]:clone()
new_seq[{t - 1, 1}] = self.vocab_size + 1
table.insert(done_beams,
{seq = new_seq:clone(),
log_p_seq = beam_seq_log_probs[{{}, sv}]:clone(),
p = beam_log_probs_sum[sv]})
else
max_row = max_row + 1
end
if max_row == beam_size then break end
end
it = beam_seq[t - 2]
xt = self.lookup_table:forward(it)
end
if t ~= self.max_seq_length + 2 then
if new_state then state = new_state end
local inputs = {xt, unpack(state)}
local out = self.core:forward(inputs)
log_probs = torch.log(out[self.num_state + 1])
state = {}
for i = 1, self.num_state do table.insert(state, out[i]) end
end
end
table.sort(done_beams, compare)
seq[{{}, k}] = done_beams[1].seq
seq_log_probs[{{}, k}] = done_beams[1].log_p_seq
end
return seq, seq_log_probs
end