-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
executable file
·69 lines (41 loc) · 1.92 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from model import inception_resnet_v2
import tensorflow as tf
from utils import read_and_decode
import numpy as np
import logging
from tqdm import tqdm
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(filename)s - %(funcName)s: %(lineno)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
model_path = './models/'
test_data = './tfrecords/test.tfrecords'
tf.reset_default_graph()
au_test, label_test = read_and_decode(test_data)
au_test_batch, label_test_batch = tf.train.shuffle_batch([au_test, label_test],
batch_size=1,
num_threads=16,
capacity=800 + 3,
min_after_dequeue=800,
)
input_ = tf.placeholder(tf.float32, [None, 647, 128, 1])
logits_, _ = inception_resnet_v2(input_, is_training=False, dropout_keep_prob=1, create_aux_logits=False)
with tf.Session() as sess:
saver = tf.train.Saver()
saver.restore(sess, "models/inception_resnet_v2_iteration_9999.ckpt")
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
N = 1000
top1 = 0
top3 = 0
for i in tqdm(range(N)):
data, labels = sess.run([au_test_batch, label_test_batch])
logits = sess.run(logits_, feed_dict={input_: data}).ravel()
max_index = np.argsort(-logits)
predict = np.argmax(logits)
if predict == int(labels):
top1 += 1
if int(labels) in max_index[:3]:
top3 += 1
logging.info("top1: {:.2f}%".format(top1 / N * 100))
logging.info("top3: {:.2f}%".format(top3 / N * 100))
coord.request_stop()
coord.join(threads)