-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsmp.py
323 lines (271 loc) · 11.7 KB
/
smp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright 2024 Lucky Wong
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
"""Smoothed Max Pooling Loss
<LEARNING TO DETECT KEYWORD PARTS AND WHOLE BY SMOOTHED MAX POOLING>
http://arxiv.org/abs/2001.09246
"""
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
def truncated_gaussian_in_full_window(
full_window_size=60, trunc_window_size=21, sigma=9
):
"""
For the decoder SMP(smoothed max pooling) loss,
truncated Gaussian as the smoothing filter s(t) with µ = 0, σ = 9 frames (90ms)
and truncated length 21 frames.
Max pooling window of size 60 frames (600ms)
Creates a 1D Gaussian filter where the center 'trunc_window_size' frames are filled
with a truncated Gaussian, and the rest are zeros.
Args:
- full_window_size (int): The size of the full window over which the filter is applied (60 frames).
- trunc_window_size (int): The truncated length to be applied to the center of the filter (21 frames).
- sigma (float): The standard deviation of the Gaussian (9 frames).
Returns:
- smoothing_filter (Tensor): A 1D filter tensor of shape (1, 1, full_window_size)
with the central 'trunc_window_size' frames filled by a Gaussian.
"""
# Create a range for the truncated Gaussian part (center 21 frames)
trunc_half = trunc_window_size // 2
x = torch.arange(-trunc_half, trunc_half + 1, dtype=torch.float32)
# Compute the Gaussian function for each value of x (21 frames)
gaussian_filter = torch.exp(-0.5 * (x / sigma) ** 2)
# Normalize the Gaussian filter to sum to 1
gaussian_filter /= gaussian_filter.sum()
# Create a full window of zeros (60 frames)
full_filter = torch.zeros(full_window_size, dtype=torch.float32)
# Find the center index of the full window
center_idx = full_window_size // 2
# Place the truncated Gaussian filter in the center of the full window
full_filter[center_idx - trunc_half: center_idx +
trunc_half + 1] = gaussian_filter
# Reshape the filter to fit a 1D convolution: (out_channels, in_channels, full_window_size)
smoothing_filter = full_filter.view(1, 1, -1)
return smoothing_filter
class DecoderSmoothedMaxPoolingLoss(nn.Module):
"""
For the decoder SMP(smoothed max pooling) loss,
we used truncated Gaussian as the smoothing filter s(t) with µ = 0, σ = 9 frames (90ms) and truncated length 21 frames.
Max pooling window of size 60 frames (600ms) with offsetD = 40 frames (400ms) is used.
"""
def __init__(
self,
win_size: int = 60, # 600ms
offset_d: int = 40, # 400ms
trunc_window_size: int = 21, # 210ms
sigma: int = 9, # 9ms
) -> None:
"""
Args:
- win_size: Window size for the max pooling.
- offset_d: Offset size.
- trunc_window_size: Truncated window size.
- sigma: Gaussian sigma.
"""
super(DecoderSmoothedMaxPoolingLossV2, self).__init__()
self.win_size = win_size
self.smoothing_filter = truncated_gaussian_in_full_window(
full_window_size=win_size, trunc_window_size=trunc_window_size, sigma=sigma
)
self.offset_d = offset_d
def forward(
self,
X: torch.Tensor,
lengths: torch.Tensor,
tgt: torch.Tensor,
w_end: List[int],
):
"""
Args:
- X: Tensor of shape (batch_size, frames, num_class), the input sigmoid.
- lengths: Tensor of shape (batch_size,), encoder lengths.
- tgt: Tensor of shape (batch_size), ground truth labels, -1 means negative.
- w_end: List of word end frame.
Returns:
- loss: Scalar tensor representing the smoothed max pooling loss.
"""
mask = padding_mask(lengths)
X_clamp = torch.clamp(X.masked_fill(mask.unsqueeze(-1), 0.0), 1e-8, 1.0)
# num_utts, frames, num_keywords = X.shape
device = X.device
smoothing_filter = self.smoothing_filter.to(device)
# Compute negative sample loss for all samples and keywords
negative_mask = torch.ones_like(X_clamp, dtype=torch.bool)
# Get indices of samples where `tgt != -1`
valid_tgt_mask = tgt != -1
valid_indices = torch.nonzero(valid_tgt_mask).squeeze(-1)
if valid_indices.numel() > 0:
# Convert valid_indices to a Python list
valid_indices_list = valid_indices.tolist()
tgt_valid = tgt[valid_tgt_mask]
# Note: Ensure that tgt_valid is also a Python list or tensor
# Exclude target classes
negative_mask[valid_indices, :, tgt_valid] = False
# Process positive samples
tau_d_start = []
tau_d_end = []
for idx, i in enumerate(valid_indices_list):
cur_frame_len = lengths[i]
assert w_end[i] > 0, (w_end[i], cur_frame_len)
start = max(0, w_end[i] + self.offset_d - self.win_size)
end = min(start + self.win_size, cur_frame_len)
assert start < end, (start, end)
tau_d_start.append(start)
tau_d_end.append(end)
max_window_size = max(
end - start for start, end in zip(tau_d_start, tau_d_end)
)
# Initialize a tensor to store all positive sample windows
prob_windows = torch.zeros(
len(valid_indices_list), 1, max_window_size, device=device
)
for idx, i in enumerate(valid_indices_list):
# i = int(i) # Ensure i is an integer
prob = X_clamp[i, :, tgt[i]]
start = tau_d_start[idx]
end = tau_d_end[idx]
window = prob[start:end]
# Pad to the maximum window size
prob_windows[idx, 0, : end - start] = window
# Apply convolution to all windows
smoothed_prob_windows = F.conv1d(
prob_windows,
smoothing_filter,
padding="same",
groups=1,
).squeeze(1)
# Compute positive sample loss
max_probs = smoothed_prob_windows.clamp(1e-8, 1.0).max(dim=1).values
positive_loss = -torch.log(max_probs).sum()
# Process negative loss for positive samples
for idx, i in enumerate(valid_indices_list):
# i = int(i) # Ensure i is an integer
prob = X_clamp[i, :, tgt[i]]
start = tau_d_start[idx]
end = tau_d_end[idx]
neg_loss = -torch.log(1 - prob[:start]).sum()
neg_loss += -torch.log(1 - prob[end : lengths[i]]).sum()
positive_loss += neg_loss
else:
positive_loss = (
0.0 # If there are no valid positive samples, positive loss is zero
)
# Apply valid frame mask and negative sample mask
negative_loss = -torch.log(1 - X_clamp)
negative_loss = negative_loss * negative_mask
negative_loss = negative_loss.sum()
# Total loss
loss = positive_loss + negative_loss
return loss
class EncoderSmoothedMaxPoolingLoss(nn.Module):
"""
For the encoder SMP loss, we used truncated gaussian with
µ= 0, σ = 4 frames and truncated length 9. Encoder max pooling
windows have size of 20 frames with offsetE = 40 frames. These
windows are placed sequentially in 40 frames interval.
"""
def __init__(
self,
win_size: int = 20, # 200ms
offset_d: int = 40, # 400ms
trunc_window_size: int = 9, # 90ms
sigma: int = 4, # 40ms
) -> None:
"""
Args:
- win_size: Window size for the max pooling.
- offset_d: Offset size.
- trunc_window_size: Truncated window size.
- sigma: Gaussian sigma.
"""
super(EncoderSmoothedMaxPoolingLoss, self).__init__()
self.win_size = win_size
self.smoothing_filter = truncated_gaussian_in_full_window(
full_window_size=win_size, trunc_window_size=trunc_window_size, sigma=sigma
)
self.offset_d = offset_d
def forward(
self,
X: torch.Tensor,
lengths: torch.Tensor,
tgt: List[List],
p_end: List[int],
sil_idx: int = 0,
):
"""
Args:
- X: Tensor of shape (batch_size, frames, num_class), the input log-softmax.
- lengths: Tensor of shape (batch_size,), encoder lengths.
- tgt: Tensor of shape (batch_size, frames,), ground truth labels.
- p_end: List of phoneme end frame.
Returns:
- loss: Scalar tensor representing the smoothed max pooling loss.
"""
num_utts, _, _ = X.shape
smoothing_filter = self.smoothing_filter.to(X.device)
# Initialize the total loss
loss = 0.0
# Get all frame lengths and the number of phonemes for each utterance
cur_frame_lens = lengths[:num_utts] # Shape: [num_utts]
cur_phoneme_nums = torch.tensor([len(t) for t in tgt]).to(
X.device
) # Shape: [num_utts]
# Get cur_phoneme_end for each utterance and adjust with offset_d
cur_phoneme_ends = torch.clamp(
torch.tensor(p_end[:num_utts]).long().to(X.device) + self.offset_d,
max=cur_frame_lens,
) # Shape: [num_utts]
# Compute tau_e_start and tau_e_end in a vectorized manner
idxs = (
torch.arange(cur_phoneme_nums.max(), device=X.device)
.unsqueeze(0)
.expand(num_utts, -1)
)
tau_e_starts = torch.clamp(
cur_phoneme_ends.unsqueeze(1)
- self.win_size * (cur_phoneme_nums.unsqueeze(1) - idxs),
min=0,
)
tau_e_ends = torch.clamp(
tau_e_starts + self.win_size, max=cur_frame_lens.unsqueeze(1)
)
# Initialize first_tau_e_start and last_tau_e_end
first_tau_e_starts = tau_e_starts[:, 0]
last_tau_e_ends = tau_e_ends[torch.arange(num_utts), cur_phoneme_nums - 1]
# For each utterance and phoneme, calculate smoothed max pooling in the window
for i in range(num_utts):
cur_frame_len = cur_frame_lens[i]
part_log_prob = X[i, :cur_frame_len, :]
part_tgt = tgt[i]
cur_phoneme_num = cur_phoneme_nums[i]
# Loop through all phonemes
for idx in range(cur_phoneme_num):
tau_e_start = tau_e_starts[i, idx]
tau_e_end = tau_e_ends[i, idx]
# Apply smoothing for each window
log_prob_win = part_log_prob[tau_e_start:tau_e_end, part_tgt[idx]].view(
1, 1, -1
)
smoothed_log_prob_win = F.conv1d(
log_prob_win, smoothing_filter, padding="same"
).view(-1)
# Find the maximum probability and accumulate loss
loss += -smoothed_log_prob_win.max()
# Compute negative loss for frames outside the phoneme regions
loss += -part_log_prob[: first_tau_e_starts[i], sil_idx].sum()
loss += -part_log_prob[last_tau_e_ends[i] :, sil_idx].sum()
return loss