+ Calculate the change-of-basis matrix between two bases of \IR^n.
+
+
+
+
+
+
+ Warm Up
+
+
+
+Class Activities
+
+
+ So far, when working with the Euclidean vector space \IR^n, we have primarily worked with the standard basis \mathcal{E}=\setList{\vec{e}_1,\dots, \vec{e}_n}.
+ We can explore alternative perspectives more easily if we expand our toolkit to analyze different bases.
+
+
+
+
+
+ Let \cal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}=\setList{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}1\\-1\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}}.
+
+
+
+
+ Is \cal{B} a basis of \IR^3?
+
+
+
+
+
+ Yes.
+
+
+
+
+ No.
+
+
+
+
+
+
+
+ Since \cal{B} is a basis, we know that if \vec{v}\in \IR^3, the following vector equation have will have a unique solution:
+ x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3=\vec{v}
+ Given this, we define a map C_{\mathcal{B}}\colon\IR^3\to\IR^3 via the rule that C_{\mathcal{B}}(\vec{v}) is equal to the unique solution to the above vector equation.
+ The map C_{\mathcal{B}} is a linear map.
+
+ Compute C_\mathcal{B}(\vec{e}_1),C_\mathcal{B}(\vec{e}_2), C_\mathcal{B}(\vec{e}_3) and, in doing so, write down the standard matrix M_\mathcal{B} of C_\mathcal{B}.
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Note that one way to compute M_{\mathcal{B}} is calculate the RREF of the following matrix:
+ \left[\begin{array}{ccc|ccc}1&1&0&1&0&0\\
+ 0&-1&1&0&1&0\\
+ 1&1&1&0&0&1\end{array}\right]\sim\left[\begin{array}{ccc|ccc}1&0&0&2&1&-1\\
+ 0&1&0&-1&-1&1\\
+ 0&0&1&-1&0&1\end{array}\right]
+ Thus, the matrix M_{\mathcal{B}} is the inverse of the matrix [\vec{v}_1\ \vec{v}_2\ \vec{v}_3].
+ That is:
+ M_{\mathcal{B}}^{-1}=[\vec{v}_1\ \vec{v}_2\ \vec{v}_3].
+
+
+
+
+
+ Given a basis \cal{B}=\setList{\vec{v}_1,\dots, \vec{v}_n} of \IR^n, the change of basis/coordinate transformation from the standard basis to\mathcal{B} is the transformation C_\mathcal{B}\colon\IR^n\to\IR^n defined by the property that, for any vector \vec{v}\in\IR^n, the vector C_\mathcal{B}(\vec{v}) is the unique solution to the vector equation:
+ x_1\vec{v}_1+\dots+x_n\vec{v}_n=\vec{v}.
+ Its standard matrix is called the change-of-basis matrix from the standard basis to \mathcal{B} and is denoted by M_{\mathcal{B}}.
+ It satisfies the following:
+ M_{\mathcal{B}}^{-1}=[\vec{v}_1\ \cdots\ \vec{v}_n].
+
+
+ The vector C_\mathcal{B}(\vec{v}) is the \mathcal{B}-coordinates of \vec{v}.
+ If you work with standard coordinates, and I work with \mathcal{B}-coordinates, then to build the vector that you call \vec{v}=\begin{bmatrix}a_1\\\vdots\\a_n\end{bmatrix}=a_1\vec{e}_1+\cdots+a_n\vec{e}_n, I would first compute C_\mathcal{B}(\vec{v})=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} and then build \vec{v}=x_1\vec{v}_1+\cdots+x_n\vec{v}_n.
+
+
+ In particular, notation as above, we would have:
+ a_1\vec{e}_1+\cdots a_n\vec{e}_n=\vec{v}=x_1\vec{v}_1+\cdots+x_n\vec{v}_n.
+
+
+
+
+
+
+
+
+ Let \vec{v}_1=\begin{bmatrix}1\\-2\\1\end{bmatrix},\ \vec{v}_2=\begin{bmatrix}-1\\0\\3\end{bmatrix},\ \vec{v}_3=\begin{bmatrix}0\\1\\-1\end{bmatrix}, and \mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}
+
+
+
+
+ Calculate M_{\mathcal{B}} using technology.
+
+
+
+
+
+
+
+
+
+
+ Use your result to calculate C_\mathcal{B}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) and express the vector \begin{bmatrix}1\\1\\1\end{bmatrix} as a linear combination of \vec{v}_1,\vec{v}_2,\vec{v}_3.
+
+
+
+
+
+ Let T\colon\IR^n\to\IR^n be a linear transformation and let A denote its standard matrix.
+ If \cal{B}=\setList{\vec{v}_1,\dots, \vec{v}_n} is some other basis, then we have:
+
+ M_\mathcal{B}AM_{\mathcal{B}}^{-1} \amp= M_\mathcal{B}A[\vec{v_1}\cdots\vec{v}_n]
+ \amp= M_\mathcal{B}[T(\vec{v}_1)\cdots T(\vec{v}_n)]
+ \amp= [C_\mathcal{B}(T(\vec{v}_1))\cdots C_\mathcal{B}(T(\vec{v}_n))]
+
+ In other words, the matrix M_{\mathcal{B}}AM_{\mathcal{B}}^{-1} is the matrix whose columns consist of \mathcal{B}-coordinate vectors of the image vectors T(\vec{v}_i).
+ The matrix M_{\mathcal{B}}AM_{\mathcal{B}}^{-1} is called the matrix of T with respect to \mathcal{B}-coordinates.
+
+
+
+
+
+
+ Let \mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}=\setList{\begin{bmatrix}1\\-2\\1\end{bmatrix},\begin{bmatrix}-1\\0\\3\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix}} be basis from the previous Activity.
+ Let T denote the linear transformation whose standard matrix is given by:
+ A=\begin{bmatrix}9&4&4\\6&9&2\\-18&-16&-9\end{bmatrix}.
+
+
+
+
+ Calculate the matrix M_\mathcal{B}AM_{\mathcal{B}}^{-1}.
+
+
+
+
+
+
+
+
+
+
+ The matrix A describes how the standard basis of \IR^3 is transformed by the linear transformation T.
+ The matrix M_\mathcal{B}AM_{\mathcal{B}}^{-1} describes how \cal{B} is transformed (in \mathcal{B}-coordinates).
+ Which of these two descriptions is easier for you to describe/understand/visualize and why?
+
+
+
+
+
+
+
+
+ Sample Problem and Solution
+
+
+
+ Let \mathcal{B}=\setList{\begin{bmatrix}-2\\-2\\1\end{bmatrix},\begin{bmatrix}-1\\-2\\-1\end{bmatrix},\begin{bmatrix}1\\3\\2\end{bmatrix}}, and \vec{v}=\begin{bmatrix}1\\2\\3\end{bmatrix}.
+
+
+
+ Explain and demonstrate how to verify that \mathcal{B} is a basis of \IR^3 and how to calculate M_\mathcal{B}, the change-of-basis matrix from the standard basis of \IR^3 to \mathcal{B}.
+
+
+
+
+ Explain and demonstrate how to use M_\mathcal{B} to express \vec{v} in terms of \mathcal{B}-basis vectors.
+
+
+
+
+
+
+ We can accomplish both tasks by calculating the RREF of the following matrix:
+ \RREF\left[\begin{array}{ccc|ccc}-2&-1&1&1&0&0\\
+ -2&-2&3&0&1&0\\1&-1&2&0&0&1\end{array}\right]
+ =
+ \left[\begin{array}{ccc|ccc}1&0&0&1&-1&1\\
+ 0&1&0&-7&5&-4\\
+ 0&0&1&-4& 3&-2\end{array}\right].
+ The fact that the matrix to the left of the vertical bar is the identity matrix tells that \mathcal{B} is a basis.
+ The matrix on the right hand side of the bar is equal to the change-of-basis matrix:
+ M_\mathcal{B}=\left[\begin{array}{ccc}1&-1&1\\
+ -7&5&-4\\
+ -4& 3&-2\end{array}\right].
+
+
+
+
+ By definition of the change of basis matrix, if \vec{v}=\begin{bmatrix}1\\2\\3\end{bmatrix}, then the coordinates of \vec{v} with respect to \mathcal{B} are given by:
+ M_\mathcal{B}\vec{v}=M_\mathcal{B}=\left[\begin{array}{ccc}1&-1&1\\
+ -7&5&-4\\
+ -4& 3&-2\end{array}\right]\begin{bmatrix}1\\2\\3\end{bmatrix}=\begin{bmatrix}2\\-9\\-4\end{bmatrix}.
+ It follows that:
+ \begin{bmatrix}1\\2\\3\end{bmatrix}=2\begin{bmatrix}-2\\-2\\1\end{bmatrix} -9\begin{bmatrix}-1\\-2\\-1\end{bmatrix} -4\begin{bmatrix}1\\3\\2\end{bmatrix}.
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/source/linear-algebra/source/05-GT/main.ptx b/source/linear-algebra/source/05-GT/main.ptx
index 4cf21668..299537a5 100644
--- a/source/linear-algebra/source/05-GT/main.ptx
+++ b/source/linear-algebra/source/05-GT/main.ptx
@@ -7,5 +7,5 @@
-
+