-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathAVLTree.js
280 lines (262 loc) · 7.04 KB
/
AVLTree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/**
* Adelson-Velsky and Landis Tree
* [Wikipedia](https://en.wikipedia.org/wiki/AVL_tree)
* [A video lecture](http://www.youtube.com/watch?v=TbvhGcf6UJU)
*/
'use strict'
/**
* A utility class for comparator
* A comparator is expected to have following structure
*
* comp(a, b) RETURN < 0 if a < b
* RETURN > 0 if a > b
* MUST RETURN 0 if a == b
*/
let utils
;(function (_utils) {
function comparator() {
return function (v1, v2) {
if (v1 < v2) return -1
if (v2 < v1) return 1
return 0
}
}
_utils.comparator = comparator
})(utils || (utils = {}))
/**
* @constructor
* A class for AVL Tree
* @argument comp - A function used by AVL Tree For Comparison
* If no argument is sent it uses utils.comparator
*/
class AVLTree {
constructor(comp) {
/** @public comparator function */
this._comp = undefined
this._comp = comp !== undefined ? comp : utils.comparator()
/** @public root of the AVL Tree */
this.root = null
/** @public number of elements in AVL Tree */
this.size = 0
}
/* Public Functions */
/**
* For Adding Elements to AVL Tree
* @param {any} _val
* Since in AVL Tree an element can only occur once so
* if a element exists it return false
* @returns {Boolean} element added or not
*/
add(_val) {
const prevSize = this.size
this.root = insert(this.root, _val, this)
return this.size !== prevSize
}
/**
* TO check is a particular element exists or not
* @param {any} _val
* @returns {Boolean} exists or not
*/
find(_val) {
const temp = searchAVLTree(this.root, _val, this)
return temp != null
}
/**
*
* @param {any} _val
* It is possible that element doesn't exists in tree
* in that case it return false
* @returns {Boolean} if element was found and deleted
*/
remove(_val) {
const prevSize = this.size
this.root = deleteElement(this.root, _val, this)
return prevSize !== this.size
}
}
// creates new Node Object
class Node {
constructor(val) {
this._val = val
this._left = null
this._right = null
this._height = 1
}
}
// get height of a node
const getHeight = function (node) {
if (node == null) {
return 0
}
return node._height
}
// height difference or balance factor of a node
const getHeightDifference = function (node) {
return node == null ? 0 : getHeight(node._left) - getHeight(node._right)
}
// update height of a node based on children's heights
const updateHeight = function (node) {
if (node == null) {
return
}
node._height = Math.max(getHeight(node._left), getHeight(node._right)) + 1
}
// Helper: To check if the balanceFactor is valid
const isValidBalanceFactor = (balanceFactor) =>
[0, 1, -1].includes(balanceFactor)
// rotations of AVL Tree
const leftRotate = function (node) {
const temp = node._right
node._right = temp._left
temp._left = node
updateHeight(node)
updateHeight(temp)
return temp
}
const rightRotate = function (node) {
const temp = node._left
node._left = temp._right
temp._right = node
updateHeight(node)
updateHeight(temp)
return temp
}
// check if tree is balanced else balance it for insertion
const insertBalance = function (node, _val, balanceFactor, tree) {
if (balanceFactor > 1 && tree._comp(_val, node._left._val) < 0) {
return rightRotate(node) // Left Left Case
}
if (balanceFactor < 1 && tree._comp(_val, node._right._val) > 0) {
return leftRotate(node) // Right Right Case
}
if (balanceFactor > 1 && tree._comp(_val, node._left._val) > 0) {
node._left = leftRotate(node._left) // Left Right Case
return rightRotate(node)
}
node._right = rightRotate(node._right)
return leftRotate(node)
}
// check if tree is balanced after deletion
const delBalance = function (node) {
const balanceFactor1 = getHeightDifference(node)
if (isValidBalanceFactor(balanceFactor1)) {
return node
}
if (balanceFactor1 > 1) {
if (getHeightDifference(node._left) >= 0) {
return rightRotate(node) // Left Left
}
node._left = leftRotate(node._left)
return rightRotate(node) // Left Right
}
if (getHeightDifference(node._right) > 0) {
node._right = rightRotate(node._right)
return leftRotate(node) // Right Left
}
return leftRotate(node) // Right Right
}
// implement avl tree insertion
const insert = function (root, val, tree) {
if (root == null) {
tree.size++
return new Node(val)
}
if (tree._comp(root._val, val) < 0) {
root._right = insert(root._right, val, tree)
} else if (tree._comp(root._val, val) > 0) {
root._left = insert(root._left, val, tree)
} else {
return root
}
updateHeight(root)
const balanceFactor = getHeightDifference(root)
return isValidBalanceFactor(balanceFactor)
? root
: insertBalance(root, val, balanceFactor, tree)
}
// delete am element
const deleteElement = function (root, _val, tree) {
if (root == null) {
return root
}
if (tree._comp(root._val, _val) === 0) {
// key found case
if (root._left === null && root._right === null) {
root = null
tree.size--
} else if (root._left === null) {
root = root._right
tree.size--
} else if (root._right === null) {
root = root._left
tree.size--
} else {
let temp = root._right
while (temp._left != null) {
temp = temp._left
}
root._val = temp._val
root._right = deleteElement(root._right, temp._val, tree)
}
} else {
if (tree._comp(root._val, _val) < 0) {
root._right = deleteElement(root._right, _val, tree)
} else {
root._left = deleteElement(root._left, _val, tree)
}
}
updateHeight(root)
root = delBalance(root)
return root
}
// search tree for a element
const searchAVLTree = function (root, val, tree) {
if (root == null) {
return null
}
if (tree._comp(root._val, val) === 0) {
return root
}
if (tree._comp(root._val, val) < 0) {
return searchAVLTree(root._right, val, tree)
}
return searchAVLTree(root._left, val, tree)
}
/**
* A Code for Testing the AVLTree
*/
// (function test () {
// const newAVL = new AVLTree()
// const size = Math.floor(Math.random() * 1000000)
// let uniques = 0
// let i, temp, j
// const array = []
// for (i = 0; i < size; i++) {
// temp = Math.floor(Math.random() * Number.MAX_VALUE)
// if (newAVL.add(temp)) {
// uniques++
// array.push(temp)
// }
// }
// if (newAVL.size !== uniques) {
// throw new Error('elements not inserted properly')
// }
// const findTestSize = Math.floor(Math.random() * uniques)
// for (i = 0; i < findTestSize; i++) {
// j = Math.floor(Math.random() * uniques)
// if (!newAVL.find(array[j])) {
// throw new Error('inserted elements not found')
// }
// }
// const deleteTestSize = Math.floor(uniques * Math.random())
// for (i = 0; i < deleteTestSize; i++) {
// j = Math.floor(Math.random() * uniques)
// temp = array[j]
// if (newAVL.find(temp)) {
// if (!newAVL.remove(temp)) {
// throw new Error('delete not working properly')
// }
// }
// }
// })()
export { AVLTree }