Skip to content

Latest commit

 

History

History
81 lines (58 loc) · 1.81 KB

README.md

File metadata and controls

81 lines (58 loc) · 1.81 KB

m3e server Docker

feature

  • 基于 SentenceTransformer 的服务, hugging face 上 sentence-transformers 模型都可以支持

Docker: https://hub.docker.com/r/theone1006/m3e-server

usage

  • cp config.template.py config.py 复制配置文件
  1. 默认(使用 m3e-base 模型)

    # 宿主机的 .cache 缓存目录映射到容器中, 以便加载模型
    docker run -d -p 6800:6800 --gpus all -v ~/.cache/:/root/.cache/ --name m3e
    
    # cpu
    docker run -d -p 6800:6800 -v ~/.cache/:/root/.cache/ --name m3e
  2. 加载多个模型 启动时加载, 通过参数指定加载的模型, 例如:

    # config.json
    ALLOW_MODELS = ["moka-ai/m3e-base", "moka-ai/m3e-small"]
  3. 自定义特征维度

    # config.json
    EXPORT_DIM=1024
  4. 独立cache

    docker run -d -p 6800:6800 -v ./hf_cache/:/root/.cache/ --name m3e theone1006/m3e-server
  5. 离线模式 将不再执行模型下载, 仅使用本地缓存的模型

    docker run -d -p 6800:6800 -v ./hf_cache/:/root/.cache/ --env TRANSFORMERS_OFFLINE=1 --name m3e theone1006/m3e-server

build script

docker build -t theone1006/m3e-server .

Test

curl -v --location --request POST 'http://127.0.0.1:6800/v1/embeddings' \
--header 'Content-Type: application/json' \
--data-raw '{
  "model": "m3e-base",
  "input": ["唱、跳、rap、篮球"]
}'

Citation

  @software {Moka Massive Mixed Embedding,  
  author = {Wang Yuxin,Sun Qingxuan,He sicheng},  
  title = {M3E: Moka Massive Mixed Embedding Model},  
  year = {2023}
  }

代码参考

  1. https://platform.openai.com/docs/api-reference/embeddings/create
  2. https://github.com/byebyebruce/m3e-embed
  3. https://hub.docker.com/layers/stawky/m3e-large-api