forked from NathanKlineInstitute/SMARTAgent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnki_network_v2.py
288 lines (254 loc) · 9.76 KB
/
nki_network_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import torch
import numpy as np
from scipy.stats import truncnorm
from bindsnet.network import Network
from bindsnet.learning import PostPre, MSTDPET
from bindsnet.learning.reward import MovingAvgRPE
from bindsnet.network.monitors import Monitor
from bindsnet.network.topology import Connection
from bindsnet.network.nodes import Input, LIFNodes
# symmetric parametric truncated normal unity zero-centered dist (LeCun style)
def truncated_normal(mean=1., std=0.05, max_dev=0.1, size=(1, 1), device='cuda'):
return torch.tensor(mean + std * truncnorm.rvs(a=-max_dev, b=max_dev, size=size), dtype=torch.float32,
device=device)
def Return_nki_net(v1_neurons, m_neurons, dt, device, runtime):
# Build network.
# default update rule :
upd_rl = MSTDPET
# upd_rl = PostPre
v1_side = int(np.sqrt(v1_neurons))
v1_inh_side = v1_side // 2
network = Network(dt=dt, batch_size=1, learning=True, reward_fn=MovingAvgRPE)
thalamus = Input(shape=(1, v1_neurons), traces=True)
thalamus_inh = LIFNodes(n=v1_neurons // 4, traces=True)
v1_directions = Input(shape=(1, v1_neurons * 8), traces=True)
v1_exc = LIFNodes(n=v1_neurons, traces=True)
v1_inh = LIFNodes(n=v1_neurons // 4, traces=True)
motor = LIFNodes(n=m_neurons * 3, traces=True)
motor_inh = LIFNodes(n=int(m_neurons * 0.75), traces=True)
layers = {
'Thalamus_Input': thalamus,
'Thalamus_Inh': thalamus_inh,
'V1_Directions_Input': v1_directions,
'V1_Exc': v1_exc,
'V1_Inh': v1_inh,
'Motor': motor,
'Motor_Inh': motor_inh
}
# connections norms
thalamus_recur = 1e-10
thalamus_inh_recur = 1e-10
thalamus_to_thalamus_inh = 1e-10
thalamus_inh_to_thalamus = -1e-10
thalamus_to_v1_exc = 1.5
v1_exc_recur = 1e-10
v1_inh_recur = 1e-10
v1_exc_to_v1_inh = 1e-10
v1_inh_to_v1_exc = -1e-10
v1_exc_to_motor = 1e-10
v1_dir_recur = 1e-10
v1_dir_to_motor = 1e-10
motor_to_v1_exc = 1e-10
motor_to_v1_dir = 1e-10
motor_to_motor_inh = 1e-10
motor_inh_to_motor = -1e-10
motor_inh_recur = 1e-10
l_rate = 0.0
# Add all layers and connections to the network.
for layer in layers:
network.add_layer(layers[layer], name=layer)
def recur_conn(name, strength):
w = torch.ones(layers[name].n, layers[name].n, device=device) - torch.eye(layers[name].n, dtype=torch.float32,
device=device)
network.add_connection(
Connection(
source=layers[name],
target=layers[name],
w=w * truncated_normal(size=w.shape), wmin=0., wmax=2. * strength,
update_rule=upd_rl,
nu=[l_rate * 1e-2, l_rate * 1e-2],
norm=strength * layers[name].n,
),
source=name, target=name
)
def all_to_all(name1, name2, strength):
w = torch.ones(layers[name1].n, layers[name2].n, dtype=torch.float32, device=device)
network.add_connection(
Connection(
source=layers[name1],
target=layers[name2],
w=w * truncated_normal(size=w.shape), wmin=0., wmax=2. * strength,
norm=strength * layers[name1].n,
update_rule=upd_rl,
nu=[l_rate * 1e-2, l_rate * 1e-2],
),
source=name1, target=name2
)
# RECURRENT CONN
recur_conn('Thalamus_Input', thalamus_recur)
recur_conn('Thalamus_Inh', thalamus_inh_recur)
recur_conn('V1_Exc', v1_exc_recur)
recur_conn('V1_Inh', v1_inh_recur)
recur_conn('Motor_Inh', motor_inh_recur)
# THALAMUS INPUT -> THALAMUS INH
Source = 'Thalamus_Input'
Target = 'Thalamus_Inh'
w = torch.zeros(layers[Source].n, layers[Target].n, dtype=torch.float32, device=device)
for i in range(v1_inh_side):
src_i = min(i * 2, v1_side - 3)
for j in range(v1_inh_side):
src_j = min(j * 2, v1_side - 3)
for di in range(3):
for dj in range(3):
w[(src_j + dj) * v1_side + src_i + di, j * v1_inh_side + i] = 1
network.add_connection(
Connection(
source=layers[Source],
target=layers[Target],
w=w * truncated_normal(size=w.shape),
wmin=0.,
wmax=2. * thalamus_to_thalamus_inh,
norm=thalamus_to_thalamus_inh * layers[Source].n,
update_rule=upd_rl,
nu=[l_rate * 1e-2, l_rate * 1e-2],
),
source=Source, target=Target
)
# THALAMUS INH -> THALAMUS INPUT
Source = 'Thalamus_Inh'
Target = 'Thalamus_Input'
w = torch.zeros(layers[Source].n, layers[Target].n, dtype=torch.float32, device=device)
for i in range(v1_inh_side):
dst_i = min(i * 2, v1_side - 5)
for j in range(v1_inh_side):
dst_j = min(j * 2, v1_side - 5)
for di in range(5):
for dj in range(5):
w[j * v1_inh_side + i, (dst_j + dj) * v1_side + dst_i + di] = 1
network.add_connection(
Connection(
source=layers[Source],
target=layers[Target],
w=w * truncated_normal(size=w.shape),
wmin=0.,
wmax=2. * thalamus_inh_to_thalamus,
norm=thalamus_inh_to_thalamus * layers[Source].n,
update_rule=upd_rl,
nu=[l_rate * 1e-2, l_rate * 1e-2],
),
source=Source, target=Target
)
# THALAMUS INPUT -> V1 EXC
Source = 'Thalamus_Input'
Target = 'V1_Exc'
w = torch.zeros(layers[Source].n, layers[Target].n, dtype=torch.float32, device=device)
for i in range(v1_side):
src_i = min(i, v1_side - 3)
for j in range(v1_side):
src_j = min(j, v1_side - 3)
for di in range(3):
for dj in range(3):
w[(src_j + dj) * v1_side + src_i + di, j * v1_side + i] = 1
network.add_connection(
Connection(
source=layers[Source],
target=layers[Target],
w=w * truncated_normal(size=w.shape),
wmin=0.,
wmax=2. * thalamus_to_v1_exc,
norm=thalamus_to_v1_exc * layers[Source].n,
update_rule=upd_rl,
nu=[l_rate * 1e-2, l_rate * 1e-2],
),
source=Source, target=Target
)
# V1 EXC -> V1 INH
Source = 'V1_Exc'
Target = 'V1_Inh'
w = torch.zeros(layers[Source].n, layers[Target].n, dtype=torch.float32, device=device)
for i in range(v1_inh_side):
src_i = min(i * 2, v1_side - 3)
for j in range(v1_inh_side):
src_j = min(j * 2, v1_side - 3)
for di in range(3):
for dj in range(3):
w[(src_j + dj) * v1_side + src_i + di, j * v1_inh_side + i] = 1
network.add_connection(
Connection(
source=layers[Source],
target=layers[Target],
w=w * truncated_normal(size=w.shape),
wmin=0.,
wmax=2. * v1_exc_to_v1_inh,
norm=v1_exc_to_v1_inh * layers[Source].n,
update_rule=upd_rl,
nu=[l_rate * 1e-2, l_rate * 1e-2],
),
source=Source, target=Target
)
# V1 INH -> V1 EXC
Source = 'V1_Inh'
Target = 'V1_Exc'
w = torch.zeros(layers[Source].n, layers[Target].n, dtype=torch.float32, device=device)
for i in range(v1_inh_side):
dst_i = min(i * 2, v1_side - 5)
for j in range(v1_inh_side):
dst_j = min(j * 2, v1_side - 5)
for di in range(5):
for dj in range(5):
w[j * v1_inh_side + i, (dst_j + dj) * v1_side + dst_i + di] = 1
network.add_connection(
Connection(
source=layers[Source],
target=layers[Target],
w=w * truncated_normal(size=w.shape),
wmin=0.,
wmax=2. * v1_inh_to_v1_exc,
norm=v1_inh_to_v1_exc * layers[Source].n,
update_rule=upd_rl,
nu=[l_rate * 1e-2, l_rate * 1e-2],
),
source=Source, target=Target
)
# RECURRENT CONN ON V1
Source = 'V1_Directions_Input'
Target = 'V1_Directions_Input'
w = torch.zeros(layers[Source].n, layers[Target].n, dtype=torch.float32, device=device)
for i in range(8):
w[i * v1_neurons:(i + 1) * v1_neurons, i * v1_neurons:(i + 1) * v1_neurons] = 1
w -= torch.eye(v1_neurons * 8, device=device)
network.add_connection(
Connection(
source=layers[Source],
target=layers[Target],
w=w * truncated_normal(size=w.shape),
wmin=0.,
wmax=2. * v1_dir_recur,
norm=v1_dir_recur * layers[Source].n,
update_rule=upd_rl,
nu=[l_rate * 1e-2, l_rate * 1e-2],
),
source=Source, target=Target
)
all_to_all('V1_Exc', 'Motor', v1_exc_to_motor)
all_to_all('V1_Directions_Input', 'Motor', v1_dir_to_motor)
all_to_all('Motor', 'V1_Exc', motor_to_v1_exc)
all_to_all('Motor', 'V1_Directions_Input', motor_to_v1_dir)
all_to_all('Motor', 'Motor_Inh', motor_to_motor_inh)
all_to_all('Motor_Inh', 'Motor', motor_inh_to_motor)
# Spike recordings for all layers.
spikes = {}
for layer in layers:
spikes[layer] = Monitor(layers[layer], ["s"]) # , time=runtime
'''
# Voltage recordings for excitatory and readout layers.
voltages = {}
for layer in set(layers.keys()) - {"X"}:
voltages[layer] = Monitor(layers[layer], ["v"], time=runtime)
'''
# Add all monitors to the network.
for layer in layers:
network.add_monitor(spikes[layer], name="%s_spikes" % layer)
# if layer in voltages:
# network.add_monitor(voltages[layer], name="%s_voltages" % layer)
return network, spikes