forked from NathanKlineInstitute/SMARTAgent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtut_artif.py
132 lines (108 loc) · 4.89 KB
/
tut_artif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
tut_artif.py
Tutorial on artificial cells (no sections)
"""
from netpyne import specs, sim
from netpyne.specs import Dict
netParams = specs.NetParams() # object of class NetParams to store the network parameters
simConfig = specs.SimConfig() # dictionary to store sets of simulation configurations
simConfig.hParams['celsius'] = 37
###############################################################################
# NETWORK PARAMETERS
###############################################################################
# Population parameters
numCells = 100
connList = [[i,i] for i in range(numCells)]
netParams.popParams['artif1'] = {'cellModel': 'NetStim', 'numCells': numCells, 'rate': 'variable', 'noise': 0, 'start': 0, 'seed': 2} # pop of NetStims
useArtif = True # False
netParams.synMechParams['AMPA'] = {'mod': 'Exp2Syn', 'tau1': 0.05, 'tau2': 5.3, 'e': 0} # excitatory synaptic mechanism
if useArtif:
netParams.popParams['artif3'] = {'cellModel': 'INTF7', 'numCells': numCells}#, 'taue': 5.0, 'taui1':10,'taui2':20,'taum':50} # pop of IntFire4
simConfig.recordTraces = {'V_soma':{'var':'Vm'}} # Dict with traces to record
else:
netParams.popParams['artif3'] = {'numCells': numCells, 'cellModel': 'Mainen'}
#netParams.importCellParams(label='PYR_Mainen_rule', conds={'cellType': ['artif3']}, fileName='cells/mainen.py', cellName='PYR2')
netParams.importCellParams(label='PYR_Mainen_rule', conds={'cellType': ['artif3']}, fileName='cells/mainen.py', cellName='PYR2')
netParams.cellParams['PYR_Mainen_rule']['secs']['soma']['threshold'] = 0.0
simConfig.recordTraces = {'V_soma':{'sec':'soma','loc':0.5,'var':'v'}} # Dict with traces to record
# Connections
k = 'artif1->artif3'
netParams.connParams[k] = {
'preConds': {'pop': 'artif1'}, 'postConds': {'pop': 'artif3'},
#'probability': 0.2,
'connList': connList,
'weight': 10,
#'synMech': 'AMPA',
'delay': 'uniform(1,5)',
'weightIndex': 0}
# netParams.connParams[k]['plast'] = {'mech': 'STDP', 'params': {'RLon':1,'RLlenhebb':200,'RLhebbwt':0.001,'RLwindhebb':50,'wbase':0,'wmax':2}}
lsynweights = []
def recordAdjustableWeights (sim, t, popname='artif3'):
# record the plastic weights for specified popname
lcell = [c for c in sim.net.cells if c.gid in sim.net.pops[popname].cellGids] # this is the set of MR cells
for cell in lcell:
for conn in cell.conns:
if 'hSTDP' in conn:
lsynweights.append([t,conn.preGid,cell.gid,float(conn['hObj'].weight[0])])
return len(lcell)
###############################################################################
# SIMULATION PARAMETERS
###############################################################################
# Simulation parameters
simConfig.duration = 1*1e3 # Duration of the simulation, in ms
simConfig.dt = 0.1 # Internal integration timestep to use
simConfig.createNEURONObj = 1 # create HOC objects when instantiating network
simConfig.createPyStruct = 1 # create Python structure (simulator-independent) when instantiating network
simConfig.verbose = 1 #False # show detailed messages
# Recording
# # Analysis and plotting
simConfig.analysis['plotRaster'] = True
#simConfig.analysis['plotTraces'] = {'include': ['all']}
simConfig.analysis['plotTraces'] = {'include': [('artif3',0)]}
sim.create(netParams, simConfig)
lcell = [c for c in sim.net.cells if c.gid in sim.net.pops['artif1'].cellGids]
for cell in lcell: cell.hPointp.interval = 5
"""
lSTDPmech = []
for cell in sim.net.cells:
for conn in cell.conns:
STDPmech = conn.get('hSTDP') # check if the connection has a NEURON STDP mechanism object
if STDPmech: lSTDPmech.append(STDPmech)
"""
###############################################################################
# RUN SIM
###############################################################################
def mycallback (t):
print('mycallback',t)
# for stdpmech in lSTDPmech: stdpmech.reward_punish(1.0)
# recordAdjustableWeights(sim,t)
def insertSpikes (sim, spkht=50):
sampr = 1e3 / simConfig.dt
import pandas as pd
import numpy as np
spkt, spkid = sim.simData['spkt'], sim.simData['spkid']
spk = pd.DataFrame(np.array([spkid, spkt]).T,columns=['spkid','spkt'])
for kvolt in sim.simData['V_soma'].keys():
cellID = int(kvolt.split('_')[1])
spkts = spk[spk.spkid == cellID]
if len(spkts):
for idx in spkts.index:
tdx = int(spk.at[idx, 'spkt'] * sampr / 1e3)
sim.simData['V_soma'][kvolt][tdx] = spkht
lcell3 = [c for c in sim.net.cells if c.gid in sim.net.pops['artif3'].cellGids]
c = lcell3[0]
sim.run.runSim()
#sim.runSimWithIntervalFunc(50,mycallback)
insertSpikes(sim)
sim.gatherData()
sim.analysis.plotData()
from pylab import *
ion()
figure()
plot(sim.simData['t'],sim.simData['V_soma']['cell_100'])
"""
#sim.createSimulateAnalyze()
sim.create(netParams, simConfig)
sim.gatherData() # gather data from different nodes
sim.analysis.plotData()
"""