-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiagonalSBP.jl
785 lines (684 loc) · 47.5 KB
/
DiagonalSBP.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
using SparseArrays
# DIAGONAL_SBP_D1 creates a diagonal norm SBP operator
# (D, Hinv, H, r) = D1(p, N; xc = (-1,1))
#
# inputs:
# p: sbp interior accuracy
# N: finite difference grid size is N+1
# xc: (keyword) grid span [default: (-1, 1)]
#
# outputs:
# D: difference operator Hinv*(-M+BS)
# HI: inverse of the SBP norm
# H: the SBP norm
# r: grid from xc[1] to xc[2]
#
# References:
# Operators for order 2, 4, 6 are from
# @book{gustafsson2008high,
# title={High order difference methods for time dependent PDE},
# author={Gustafsson, Bertil},
# year={2008},
# publisher={Springer},
# series={Springer Series in Computational Mathematics},
# volume={38}
# }
#
# Order 6 Operator is from
# @ARTICLE{Strand94,
# author = {B. Strand},
# title = {Summation by parts for finite difference approximations for $d/dx$},
# journal = {Journal of Computational Physics},
# year = {1994},
# volume = {110},
# pages = {47--67},
# number = {1},
# doi = {10.1006/jcph.1994.1005}
# }
#
# Order 8 operator is from
# @article{MattssonSvardShoeybe2008JCP,
# title={Stable and accurate schemes for the compressible Navier--Stokes equations},
# author={Mattsson, Ken and Sv{\"a}rd, Magnus and Shoeybi, Mohammad},
# journal={Journal of Computational Physics},
# volume={227},
# number={4},
# pages={2293--2316},
# year={2008},
# doi={10.1016/j.jcp.2007.10.018}
# }
# with
# x1 = 663/950
# x2 = -229/1900
# x3 = 415/547
#
# Order 10 operator is from
# @Article{MattssonAlmquist2013JCP,
# author = {K. Mattsson and M. Almquist},
# title = {A solution to the stability issues with block norm summation by parts operators},
# journal = {Journal of Computational Physics},
# volume = {253},
# pages = {418--442},
# year = {2013},
# doi = {10.1016/j.jcp.2013.07.013}
# }
#{{{
function D1(p, N; xc = (-1, 1))
if p == 2
bhinv = [2]
d = [-1/2 0 1/2]
bd = [-1 1]
elseif p == 4
bhinv = [48/17 48/59 48/43 48/49]
d = [1/12 -2/3 0 2/3 -1/12]
bd = [-24/17 59/34 -4/17 -3/34 0 0;
-1/2 0 1/2 0 0 0;
4/43 -59/86 0 59/86 -4/43 0;
3/98 0 -59/98 0 32/49 -4/49]
elseif p == 6
bhinv = [43200/13649 8640/12013 4320/2711 4320/5359 8640/7877 43200/43801];
d = [-1/60 3/20 -3/4 0 3/4 -3/20 1/60];
x1=0.70127127127127;
bd = [-21600/13649 8(16200x1-953)/40947 (-1036800x1+715489)/81894 3(86400x1-62639)/13649 5(-207360x1+147127)/81894 (129600x1-89387)/40947 0 0 0;
8(-16200x1+953)/180195 0 (86400x1-57139)/12013 (-1036800x1+745733)/72078 5(25920x1-18343)/12013 (-345600x1+240569)/120130 0 0 0;
(1036800x1-715489)/162660 (-86400x1+57139)/5422 0 (259200x1-176839)/8133 (-345600x1+242111)/10844 (259200x1-182261)/27110 0 0 0;
3(-86400x1+62639)/53590 (1036800x1-745733)/64308 (-259200x1+176839)/16077 0 (259200x1-165041)/32154 (-1036800x1+710473)/321540 72/5359 0 0;
(207360x1-147127)/47262 5(-25920x1+18343)/7877 (345600x1-242111)/15754 (-259200x1+165041)/23631 0 8640x1/7877 -1296/7877 144/7877 0;
(-129600x1+89387)/131403 (345600x1-240569)/87602 (-259200x1+182261)/43801 (1036800x1-710473)/262806 -43200x1/43801 0 32400/43801 -6480/43801 720/43801];
elseif p == 8
bhinv = [5080320/1498139 725760/1107307 80640/20761 725760/1304999 725760/299527 80640/103097 725760/670091 5080320/5127739];
d = [1/280 -4/105 1/5 -4/5 0 4/5 -1/5 4/105 -1/280];
bd = [ -2540160/1498139 699846290793/311403172540 -10531586157/311403172540 -145951651079/186841903524 398124597/15570158627 39152001/113858564 -80631892229/934209517620 -6230212503/311403172540 0 0 0 0;
-24132630717/55557028660 0 2113176981/23016483302 5686186719/11508241651 -3408473341/138098899812 -39291999/210388330 607046586/11508241651 3460467023/483346149342 0 0 0 0;
3510528719/90623010660 -704392327/1294614438 0 503511235/1294614438 354781619/2589228876 407439/3944590 -2986842/16597621 169381493/3020767022 0 0 0 0;
145951651079/1139279786988 -5686186719/13562854607 -1510533705/27125709214 0 6763379967/54251418428 13948923/49589962 -1603900430/40688563821 -3742312557/189879964498 0 0 0 0;
-398124597/21790888777 3408473341/37355809332 -1064344857/12451936444 -6763379967/12451936444 0 763665/1198108 -1282435899/12451936444 7822226819/261490665324 -2592/299527 0 0 0;
-1864381/23506116 13097333/58765290 -407439/19588430 -4649641/11753058 -254555/1237164 0 5346432/9794215 -923328/9794215 3072/103097 -288/103097 0 0;
11518841747/417855345780 -607046586/6964255763 1192698/23768791 1603900430/20892767289 1282435899/27857023052 -48117888/63658645 0 301190400/366539777 -145152/670091 27648/670091 -2592/670091 0;
6230212503/1065851828540 -3460467023/319755548562 -1524433437/106585182854 3742312557/106585182854 -7822226819/639511097124 58169664/487135205 -2108332800/2804873233 0 4064256/5127739 -1016064/5127739 193536/5127739 -18144/5127739];
elseif p == 10
bhinv = [18289152000/5261271563 1828915200/2881040311 406425600/52175551 6096384/11662993 87091200/50124587 72576000/50124587 87091200/148333439 152409600/63867949 16257024/20608675 1828915200/1704508063 18289152000/18425967263];
d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
bd = [ -1.7380923775745425e+00 2.3557601935237220e+00 -1.5328406598563976e-01 -5.7266565770416333e-01 -1.8308103515008173e-01 1.8186748267946842e-01 2.0034232582598244e-01 2.2678007363666621e-02 -1.1782459320459637e-01 -3.0591175636402144e-02 3.4890895862586133e-02 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00;
-4.3020203737210871e-01 0.0000000000000000e+00 1.1837297346927406e-01 3.3928601158526644e-01 1.3241927733034406e-01 -8.7495003780608913e-02 -1.1750484124279399e-01 -1.6401912273575153e-02 6.2537843443041474e-02 1.7143274696828435e-02 -1.8155585855667674e-02 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00;
3.4348531361887280e-01 -1.4525207124434036e+00 0.0000000000000000e+00 2.9011513992277767e+00 -2.2419288742360557e+00 -5.4662873578741478e-01 1.2908050607446131e+00 6.1514504292452719e-02 -4.2442625460011202e-01 1.5579158905288801e-02 5.2969140277981920e-02 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00;
8.6111387816878188e-02 -2.7937273515056432e-01 -1.9467880944770807e-01 0.0000000000000000e+00 2.0170150914578375e-01 2.4269917331475005e-01 -7.7261988327590472e-02 5.0649247607525059e-02 -7.4775049946661561e-03 -4.0978487203372188e-02 1.8608207238964152e-02 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00;
9.1509035082611684e-02 -3.6243526359648576e-01 5.0007055839856984e-01 -6.7045605191055857e-01 0.0000000000000000e+00 -1.7807807859119628e-02 7.5000761407401195e-01 -2.2979723229714316e-01 -1.2521154324370892e-01 6.8278284106004450e-02 -4.1575927541817690e-03 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00;
-7.5752056274147259e-02 1.9956355926115746e-01 1.0160630736447970e-01 -6.7227694623145351e-01 1.4839839882599690e-02 0.0000000000000000e+00 5.4091068834671807e-01 -1.2712520372174399e-01 -8.9292453564020990e-02 1.6181541970619609e-01 -5.4289154769785249e-02 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00;
-3.3838029883391296e-02 1.0867927550524317e-01 -9.7293058702223670e-02 8.6783825404790446e-02 -2.5344131542932297e-01 -2.1934035945002228e-01 0.0000000000000000e+00 2.7184438867288430e-01 1.9102691945078512e-01 -4.8646826827046824e-02 -6.2407959378425991e-03 4.6597719614658163e-04 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00;
-1.5567948806367624e-02 6.1656604470023607e-02 -1.8844858059892756e-02 -2.3122780265804038e-01 3.1560994521078772e-01 2.0951677187991255e-01 -1.1048784865195491e+00 0.0000000000000000e+00 1.1823059621092409e+00 -5.3610400867086083e-01 1.5931375952374752e-01 -2.3673846172827626e-02 1.8939076938262100e-03 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00;
2.6737701764454301e-02 -7.7712278574126673e-02 4.2981266272823705e-02 1.1284579710276557e-02 5.6847566375570611e-02 4.8647834370398067e-02 -2.5665536068472994e-01 -3.9083324869946684e-01 0.0000000000000000e+00 6.5716944195909766e-01 -1.5822272208022428e-01 4.6954983762905661e-02 -7.8258306271509429e-03 6.2606645017207550e-04 0.0000000000000000e+00 0.0000000000000000e+00;
9.4425181052687698e-03 -2.8976375375532045e-02 -2.1459742428921558e-03 8.4117843695442701e-02 -4.2165149106440383e-02 -1.1991463562335723e-01 8.8902467992349743e-02 2.4105392677971343e-01 -8.9388344421253152e-01 0.0000000000000000e+00 8.6496680152924643e-01 -2.5547312415382800e-01 6.3868281038457000e-02 -1.0644713506409501e-02 8.5157708051276015e-04 0.0000000000000000e+00;
-9.9625965676187218e-03 2.8387641187789508e-02 -6.7495090936003027e-03 -3.5335033597892078e-02 2.3750992019053968e-03 3.7216380474824604e-02 1.0550378667904333e-02 -6.6265458456725809e-02 1.9908619649258188e-01 -8.0014409359906680e-01 0.0000000000000000e+00 8.2714572225493910e-01 -2.3632734921569687e-01 5.9081837303924217e-02 -9.8469728839873684e-03 7.8775783071898962e-04];
else
error(string("Operators for order ", p, " are not implemented"))
end
(bm, bn) = size(bd);
Np = N+1
if(Np < 2*bm || Np < bn)
error("Grid not big enough to support the operator. Grid must have N >= ", max(bn,2*bm))
end
h = (xc[2] - xc[1]) / N
@assert h > 0
H_I = 1:Np
H_V = ones(Np)
H_V[1:bm] = 1 ./ bhinv[:]
H_V[Np-bm+1:Np] = 1 ./ bhinv[end:-1:1]
H = sparse(H_I, H_I, h * H_V)
HI = sparse(H_I, H_I, 1 ./ (h * H_V))
n = floor(Int64, length(d)/2);
B_I1 = (bm+1:Np-bm) * ones(1,p+1)
B_J1 = ones(Np-2bm,1) * (-div(p,2):div(p,2))' + B_I1
B_V1 = ones(Np-2bm)
B_V1 = kron(B_V1, d)
B_I2 = (1:bm) * ones(1, bn)
B_J2 = ones(bm) * (1:bn)'
B_V2 = bd
B_I3 = (Np+1) .- B_I2
B_J3 = (Np+1) .- B_J2
B_V3 = -B_V2
D = sparse([B_I1[:];B_I2[:];B_I3[:]],
[B_J1[:];B_J2[:];B_J3[:]],
[B_V1[:];B_V2[:];B_V3[:]]/h, N+1, N+1)
r = range(xc[1], stop=xc[2], length=N+1)
(D, HI, H, r)
end
#}}}
#DIAGONAL_SBP_D2 creates a diagonal norm SBP operator for the 2nd drerivative
# (D, S0, SN, Hinv, H, r) = D2(p, N; xc = (-1,1))
#
# inputs:
# p: sbp interior accuracy
# N: finite difference grid size is N+1
# xc: (keyword) grid span [default: (-1, 1)]
#
# outputs:
# D: difference operator Hinv*(-M-S0+SN)
# S0: boundary derivative operator at first grid point
# SN: boundary derivative operator at last grid point
# HI: inverse of the SBP norm
# H: the SBP norm
# r: grid from xc[1] to xc[2]
#
# References:
# Operators for order 2, 4, 6, 8 are from
# @book{gustafsson2008high,
# title={High order difference methods for time dependent PDE},
# author={Gustafsson, Bertil},
# year={2008},
# publisher={Springer},
# series={Springer Series in Computational Mathematics},
# volume={38}
# }
#
# Order 10 operator is from
# @Article{MattssonAlmquist2013JCP,
# author = {K. Mattsson and M. Almquist},
# title = {A solution to the stability issues with block norm summation by
# parts operators},
# journal = {Journal of Computational Physics},
# volume = {253},
# pages = {418--442},
# year = {2013},
# doi = {10.1016/j.jcp.2013.07.013}
# }
#{{{
function D2(p, N; xc = (-1, 1))
if p == 2
bhinv = [2];
d = [1 -2 1];
bd = d;
BS = [3/2 -2 1/2];
elseif p == 4
bhinv = [48/17 48/59 48/43 48/49];
d = [-1/12 4/3 -5/2 4/3 -1/12];
bd = [ 2 -5 4 -1 0 0;
1 -2 1 0 0 0;
-4/43 59/43 -110/43 59/43 -4/43 0;
-1/49 0 59/49 -118/49 64/49 -4/49];
BS = [11/6 -3 3/2 -1/3];
elseif p == 6
bhinv = [43200/13649 8640/12013 4320/2711 4320/5359 8640/7877 43200/43801];
d = [1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90];
bd = [ 114170/40947 -438107/54596 336409/40947 -276997/81894 3747/13649 21035/163788 0 0 0
6173/5860 -2066/879 3283/1758 -303/293 2111/3516 -601/4395 0 0 0
-52391/81330 134603/32532 -21982/2711 112915/16266 -46969/16266 30409/54220 0 0 0
68603/321540 -12423/10718 112915/32154 -75934/16077 53369/21436 -54899/160770 48/5359 0 0
-7053/39385 86551/94524 -46969/23631 53369/15754 -87904/23631 820271/472620 -1296/7877 96/7877 0
21035/525612 -24641/131403 30409/87602 -54899/131403 820271/525612 -117600/43801 64800/43801 -6480/43801 480/43801];
BS = [25/12 -4 3 -4/3 1/4];
elseif p == 8
bhinv = [5080320/1498139 725760/1107307 80640/20761 725760/1304999 725760/299527 80640/103097 725760/670091 5080320/5127739];
d = [-1/560 8/315 -1/5 8/5 -205/72 8/5 -1/5 8/315 -1/560]
bd = zeros(8,12);
bd[1, 1] = 4870382994799/1358976868290;
bd[1, 2] = -893640087518/75498714905 ;
bd[1, 3] = 926594825119/60398971924 ;
bd[1, 4] = -1315109406200/135897686829 ;
bd[1, 5] = 39126983272/15099742981 ;
bd[1, 6] = 12344491342/75498714905 ;
bd[1, 7] = -451560522577/2717953736580;
bd[2, 1] = 333806012194/390619153855;
bd[2, 2] = -154646272029/111605472530;
bd[2, 3] = 1168338040/33481641759 ;
bd[2, 4] = 82699112501/133926567036;
bd[2, 5] = -171562838/11160547253 ;
bd[2, 6] = -28244698346/167408208795;
bd[2, 7] = 11904122576/167408208795;
bd[2, 8] = -2598164715/312495323084;
bd[3, 1] = 7838984095/52731029988;
bd[3, 2] = 1168338040/5649753213 ;
bd[3, 3] = -88747895/144865467 ;
bd[3, 4] = 423587231/627750357 ;
bd[3, 5] = -43205598281/22599012852;
bd[3, 6] = 4876378562/1883251071 ;
bd[3, 7] = -5124426509/3766502142 ;
bd[3, 8] = 10496900965/39548272491;
bd[4, 1] = -94978241528/828644350023;
bd[4, 2] = 82699112501/157837019052;
bd[4, 3] = 1270761693/13153084921 ;
bd[4, 4] = -167389605005/118377764289;
bd[4, 5] = 48242560214/39459254763 ;
bd[4, 6] = -31673996013/52612339684 ;
bd[4, 7] = 43556319241/118377764289;
bd[4, 8] = -44430275135/552429566682;
bd[5, 1] = 1455067816/21132528431;
bd[5, 2] = -171562838/3018932633 ;
bd[5, 3] = -43205598281/36227191596;
bd[5, 4] = 48242560214/9056797899 ;
bd[5, 5] = -52276055645/6037865266 ;
bd[5, 6] = 57521587238/9056797899 ;
bd[5, 7] = -80321706377/36227191596;
bd[5, 8] = 8078087158/21132528431;
bd[5, 9] = -1296/299527 ;
bd[6, 1] = 10881504334/327321118845;
bd[6, 2] = -28244698346/140280479505;
bd[6, 3] = 4876378562/9352031967 ;
bd[6, 4] = -10557998671/12469375956 ;
bd[6, 5] = 57521587238/28056095901 ;
bd[6, 6] = -278531401019/93520319670 ;
bd[6, 7] = 73790130002/46760159835 ;
bd[6, 8] = -137529995233/785570685228;
bd[6, 9] = 2048/103097 ;
bd[6,10] = -144/103097 ;
bd[7, 1] = -135555328849/8509847458140;
bd[7, 2] = 11904122576/101307707835 ;
bd[7, 3] = -5124426509/13507694378 ;
bd[7, 4] = 43556319241/60784624701 ;
bd[7, 5] = -80321706377/81046166268 ;
bd[7, 6] = 73790130002/33769235945 ;
bd[7, 7] = -950494905688/303923123505 ;
bd[7, 8] = 239073018673/141830790969 ;
bd[7, 9] = -145152/670091 ;
bd[7,10] = 18432/670091 ;
bd[7,11] = -1296/670091 ;
bd[8, 1] = 0 ;
bd[8, 2] = -2598164715/206729925524;
bd[8, 3] = 10496900965/155047444143;
bd[8, 4] = -44430275135/310094888286;
bd[8, 5] = 425162482/2720130599 ;
bd[8, 6] = -137529995233/620189776572;
bd[8, 7] = 239073018673/155047444143;
bd[8, 8] = -144648000000/51682481381 ;
bd[8, 9] = 8128512/5127739 ;
bd[8,10] = -1016064/5127739 ;
bd[8,11] = 129024/5127739 ;
bd[8,12] = -9072/5127739 ;
BS = [4723/2100 -839/175 157/35 -278/105 103/140 1/175 -6/175];
elseif p == 10
bhinv = [18289152000/5261271563 1828915200/2881040311 406425600/52175551 6096384/11662993 87091200/50124587 72576000/50124587 87091200/148333439 152409600/63867949 16257024/20608675 1828915200/1704508063 18289152000/18425967263];
M = zeros(11,16);
M[ 1, 1] = 1.2056593789671863908;
M[ 1, 2] = -1.3378814169347239658;
M[ 1, 3] = 0.0036847309286546532061;
M[ 1, 4] = 0.15698288365600946515;
M[ 1, 5] = -0.0037472461482539197952;
M[ 1, 6] = -0.0062491712449361657064;
M[ 1, 7] = -0.029164045872729581661;
M[ 1, 8] = 0.00054848184117832929161;
M[ 1, 9] = 0.013613461413384884448;
M[ 1,10] = -0.0025059220258337808220;
M[ 1,11] = -0.00094113457993630916498;
M[ 2, 2] = 2.1749807117105597139;
M[ 2, 3] = -0.12369059547124894597;
M[ 2, 4] = -0.83712574037924152603;
M[ 2, 5] = 0.050065127254670973258;
M[ 2, 6] = 0.0081045853127317536361;
M[ 2, 7] = 0.097405846039248226536;
M[ 2, 8] = -0.00068942461520402214720;
M[ 2, 9] = -0.041326971493379188475;
M[ 2,10] = 0.0075778529605774119402;
M[ 2,11] = 0.0025800256160095691057;
M[ 3, 3] = 0.18361596652499065332;
M[ 3, 4] = 0.048289690013342693109;
M[ 3, 5] = -0.19719621435164680412;
M[ 3, 6] = 0.11406859029505842791;
M[ 3, 7] = -0.029646295985488126964;
M[ 3, 8] = -0.0016038463172861201306;
M[ 3, 9] = 0.0032879841528337653050;
M[ 3,10] = -0.00093242311589807387463;
M[ 3,11] = 0.00012241332668787820533;
M[ 4, 4] = 1.2886524606662484673;
M[ 4, 5] = -0.14403037739488789185;
M[ 4, 6] = -0.44846291607489015475;
M[ 4, 7] = -0.10598334599408054277;
M[ 4, 8] = -0.015873275740355918053;
M[ 4, 9] = 0.073988493386459608166;
M[ 4,10] = -0.012508848749152899785;
M[ 4,11] = -0.0039290233894513005339;
M[ 5, 5] = 0.51482665719685186210;
M[ 5, 6] = 0.051199577887125103015;
M[ 5, 7] = -0.36233561810883077365;
M[ 5, 8] = 0.091356850268746392169;
M[ 5, 9] = 0.0024195916108052419451;
M[ 5,10] = -0.0018564214413731389338;
M[ 5,11] = -0.00070192677320704413827;
M[ 6, 6] = 0.68636003380365860083;
M[ 6, 7] = -0.28358848290867614908;
M[ 6, 8] = -0.13836006478253396528;
M[ 6, 9] = 0.0076158070663111995297;
M[ 6,10] = 0.011447010307180005164;
M[ 6,11] = -0.0021349696610286552676;
M[ 7, 7] = 1.5216081480839085990;
M[ 7, 8] = -0.42653865162216293237;
M[ 7, 9] = -0.42047484981879143123;
M[ 7,10] = 0.019813359263872926304;
M[ 7,11] = 0.019221397241190103344;
M[ 8, 8] = 1.0656733504627815335;
M[ 8, 9] = -0.66921872668484232217;
M[ 8,10] = 0.12022033144141336599;
M[ 8,11] = -0.030157881394591483631;
M[ 9, 9] = 2.4064247712949611684;
M[ 9,10] = -1.5150200315922263367;
M[ 9,11] = 0.17373015320416595052;
M[10,10] = 2.7682502485427255096;
M[10,11] = -1.5975407111468405444;
M[11,11] = 2.9033627686681129471;
d = [1/3150 -5/1008 5/126 -5/21 5/3 -5269/1800 5/3 -5/21 5/126 -5/1008 1/3150]
for k = 1:5
M[11-5+k,11 .+ (1:k)] = -d[k:-1:1];
end
M[1:11,1:11] = M[1:11,1:11]'+M[1:11,1:11]-diagm(0 => diag(M[1:11,1:11]));
BS = zeros(1,16);
BS[1:7] = -[-49/20 6 -15/2 20/3 -15/4 6/5 -1/6];
e0 = zeros(11,1);
e0[1] = 1;
bd = diagm(0 => bhinv[:]) * (-M+e0*BS);
else
error(string("Operators for order ", p, " are not implemented"))
end
(bm, bn) = size(bd);
M = N+1;
if(M < 2*bm || M < bn)
error("Grid not big enough to support the operator. Grid must have N >= ", max(bn,2*bm))
end
h = (xc[2] - xc[1]) / N
@assert h > 0
H_I = 1:M
H_V = ones(M)
H_V[1:bm] = bhinv[:]
H_V[M-bm+1:M] = bhinv[end:-1:1]
HI = sparse(H_I, H_I, H_V / h)
H = sparse(H_I, H_I, h ./ H_V)
n = floor(Int64, length(d)/2);
B_I1 = (bm+1:M-bm) * ones(1,p+1)
B_J1 = ones(M-2bm,1) * (-div(p,2):div(p,2))' + B_I1
B_V1 = ones(M-2bm)
B_V1 = kron(B_V1, d)
B_I2 = (1:bm) * ones(1, bn)
B_J2 = ones(bm) * (1:bn)'
B_V2 = bd
B_I3 = (M+1) .- B_I2
B_J3 = (M+1) .- B_J2
B_V3 = B_V2
D = sparse([B_I1[:];B_I2[:];B_I3[:]],
[B_J1[:];B_J2[:];B_J3[:]],
[B_V1[:];B_V2[:];B_V3[:]]/h^2, N+1, N+1)
S0 = sparse(ones(length(BS)), 1:length(BS), -BS[:]/h, N+1, N+1);
SN = sparse((N+1) * ones(length(BS)), (N+1):-1:(N+2-length(BS)),
BS[:]/h, N+1, N+1);
r = range(xc[1], stop=xc[2], length=N+1)
(D, S0, SN, HI, H, r)
end
#}}}
#VARIABLE_DIAGONAL_SBP_D2 creates a diagonal norm SBP operator for the 2nd
# derivative with variable coefficients, e.g., approximates ∂/∂r( b(r) ∂u/∂r)
#
# (D, BS, Hinv, H, r) = variable_D2(p, N, B; xc = (-1,1))
#{{{
function variable_D2(p, N, B; xc = (-1, 1))
r = range(xc[1], stop=xc[2], length=N+1)
variable_D2(p, N, B(collect(r)); xc=xc)
end
function variable_D2(p, N, B::T; xc = (-1, 1)) where T <: Number
variable_D2(p, N, B*ones(N+1);xc=xc)
end
function variable_D2(p, N, B::AbstractArray; xc = (-1, 1))
@assert length(B) == N+1
if p == 2
bhinv = [2];
I_M0 = [1]
J_M0 = [1]
V_M0 = [(B[1]+B[2])/2]
I_MN = [N+1]
J_MN = [N+1]
V_MN = [(B[N]+B[N+1])/2]
I_M = [2:N+1;
2:N ;
1:N ]
J_M = [1:N ;
2:N ;
2:N+1]
V_M = [-(B[1:N ]+B[2:N+1])/2;
(B[1:N-1]+2B[2:N]+B[3:N+1])/2;
-(B[1:N ]+B[2:N+1])/2];
M = sparse([I_M0;I_M;I_MN], [J_M0;J_M;J_MN], [V_M0;V_M;V_MN])
BS = [3/2 -2 1/2];
elseif p == 4
bhinv = [48/17 48/59 48/43 48/49];
BS = [11/6 -3 3/2 -1/3];
V_M0 = zeros(6,6)
(b1,b2,b3,b4,b5,b6,b7,b8) = B[1:8]
V_M0[1, 1] = (12/17)b1 + (59/192)b2 + (27010400129/345067064608)b3 + (69462376031/2070402387648)b4
V_M0[1, 2] = V_M0[2, 1] = - (59/68)b1 - (6025413881/21126554976)b3 - (537416663/7042184992)b4
V_M0[1, 3] = V_M0[3, 1] = (2/17)b1 - (59/192)b2 + (213318005/16049630912)b4 + (2083938599/8024815456)b3
V_M0[1, 4] = V_M0[4, 1] = (3/68)b1 - (1244724001/21126554976)b3 + (752806667/21126554976)b4
V_M0[1, 5] = V_M0[5, 1] = (49579087/10149031312)b3 - (49579087/10149031312)b4
V_M0[1, 6] = V_M0[6, 1] = - (1/784)b4 + (1/784)b3
V_M0[2, 2] = (3481/3264)b1 + (9258282831623875/7669235228057664)b3 + (236024329996203/1278205871342944)b4
V_M0[2, 3] = V_M0[3, 2] = - (59/408)b1 - (29294615794607/29725717938208)b3 - (2944673881023/29725717938208)b4
V_M0[2, 4] = V_M0[4, 2] = - (59/1088)b1 + (260297319232891/2556411742685888)b3 - (60834186813841/1278205871342944)b4
V_M0[2, 5] = V_M0[5, 2] = - (1328188692663/37594290333616)b3 + (1328188692663/37594290333616)b4
V_M0[2, 6] = V_M0[6, 2] = - (8673/2904112)b3 + (8673/2904112)b4
V_M0[3, 3] = (1/51)b1 + (59/192)b2 + (13777050223300597/26218083221499456)b4 + (564461/13384296)b5 + (378288882302546512209/270764341349677687456)b3
V_M0[3, 4] = V_M0[4, 3] = (1/136)b1 - (125059/743572)b5 - (4836340090442187227/5525802884687299744)b3 - (17220493277981/89177153814624)b4
V_M0[3, 5] = V_M0[5, 3] = - (10532412077335/42840005263888)b4 + (1613976761032884305/7963657098519931984)b3 + (564461/4461432)b5
V_M0[3, 6] = V_M0[6, 3] = - (960119/1280713392)b4 - (3391/6692148)b5 + (33235054191/26452850508784)b3
V_M0[4, 4] = (3/1088)b1 + (507284006600757858213/475219048083107777984)b3 + (1869103/2230716)b5 + (1/24)b6 + (1950062198436997/3834617614028832)b4
V_M0[4, 5] = V_M0[5, 4] = - (4959271814984644613/20965546238960637264)b3 - (1/6)b6 - (15998714909649/37594290333616)b4 - (375177/743572)b5
V_M0[4, 6] = V_M0[6, 4] = - (368395/2230716)b5 + (752806667/539854092016)b3 + (1063649/8712336)b4 + (1/8)b6
V_M0[5, 5] = (8386761355510099813/128413970713633903242)b3 + (2224717261773437/2763180339520776)b4 + (5/6)b6 + (1/24)b7 + (280535/371786)b5
V_M0[5, 6] = V_M0[6, 5] = - (35039615/213452232)b4 - (1/6)b7 - (13091810925/13226425254392)b3 - (1118749/2230716)b5 - (1/2)b6
V_M0[6, 6] = (3290636/80044587)b4 + (5580181/6692148)b5 + (5/6)b7 + (1/24)b8 + (660204843/13226425254392)b3 + (3/4)b6
I_M0 = (1:6) * ones(1,6)
J_M0 = I_M0'
V_MN = zeros(6,6)
(b1,b2,b3,b4,b5,b6,b7,b8) = B[N+1:-1:N-6]
V_MN[6, 6] = (12/17)b1 + (59/192)b2 + (27010400129/345067064608)b3 + (69462376031/2070402387648)b4
V_MN[6, 5] = V_MN[5, 6] = - (59/68)b1 - (6025413881/21126554976)b3 - (537416663/7042184992)b4
V_MN[6, 4] = V_MN[4, 6] = (2/17)b1 - (59/192)b2 + (213318005/16049630912)b4 + (2083938599/8024815456)b3
V_MN[6, 3] = V_MN[3, 6] = (3/68)b1 - (1244724001/21126554976)b3 + (752806667/21126554976)b4
V_MN[6, 2] = V_MN[2, 6] = (49579087/10149031312)b3 - (49579087/10149031312)b4
V_MN[6, 1] = V_MN[1, 6] = - (1/784)b4 + (1/784)b3
V_MN[5, 5] = (3481/3264)b1 + (9258282831623875/7669235228057664)b3 + (236024329996203/1278205871342944)b4
V_MN[5, 4] = V_MN[4, 5] = - (59/408)b1 - (29294615794607/29725717938208)b3 - (2944673881023/29725717938208)b4
V_MN[5, 3] = V_MN[3, 5] = - (59/1088)b1 + (260297319232891/2556411742685888)b3 - (60834186813841/1278205871342944)b4
V_MN[5, 2] = V_MN[2, 5] = - (1328188692663/37594290333616)b3 + (1328188692663/37594290333616)b4
V_MN[5, 1] = V_MN[1, 5] = - (8673/2904112)b3 + (8673/2904112)b4
V_MN[4, 4] = (1/51)b1 + (59/192)b2 + (13777050223300597/26218083221499456)b4 + (564461/13384296)b5 + (378288882302546512209/270764341349677687456)b3
V_MN[4, 3] = V_MN[3, 4] = (1/136)b1 - (125059/743572)b5 - (4836340090442187227/5525802884687299744)b3 - (17220493277981/89177153814624)b4
V_MN[4, 2] = V_MN[2, 4] = - (10532412077335/42840005263888)b4 + (1613976761032884305/7963657098519931984)b3 + (564461/4461432)b5
V_MN[4, 1] = V_MN[1, 4] = - (960119/1280713392)b4 - (3391/6692148)b5 + (33235054191/26452850508784)b3
V_MN[3, 3] = (3/1088)b1 + (507284006600757858213/475219048083107777984)b3 + (1869103/2230716)b5 + (1/24)b6 + (1950062198436997/3834617614028832)b4
V_MN[3, 2] = V_MN[2, 3] = - (4959271814984644613/20965546238960637264)b3 - (1/6)b6 - (15998714909649/37594290333616)b4 - (375177/743572)b5
V_MN[3, 1] = V_MN[1, 3] = - (368395/2230716)b5 + (752806667/539854092016)b3 + (1063649/8712336)b4 + (1/8)b6
V_MN[2, 2] = (8386761355510099813/128413970713633903242)b3 + (2224717261773437/2763180339520776)b4 + (5/6)b6 + (1/24)b7 + (280535/371786)b5
V_MN[2, 1] = V_MN[1, 2] = - (35039615/213452232)b4 - (1/6)b7 - (13091810925/13226425254392)b3 - (1118749/2230716)b5 - (1/2)b6
V_MN[1, 1] = (3290636/80044587)b4 + (5580181/6692148)b5 + (5/6)b7 + (1/24)b8 + (660204843/13226425254392)b3 + (3/4)b6
I_MN = (N-4:N+1) * ones(1,6)
J_MN = I_MN'
I_M = [7:N-3;
7:N-4;
7:N-5;
6:N-5;
5:N-5]
J_M = [5:N-5;
6:N-5;
7:N-5;
7:N-4;
7:N-3]
V_M = [(+( 1/8)B[(5:N-5).+2] - (1/6)B[(5:N-5).+1] + (1/8)B[(5:N-5) ]);
(-( 1/6)B[(6:N-5).+2] - (1/2)B[(6:N-5).+1] - (1/2)B[(6:N-5) ] - (1/6)B[(6:N-5).-1]);
(+(1/24)B[(7:N-5).+2] + (5/6)B[(7:N-5).+1] + (3/4)B[(7:N-5) ] + (5/6)B[(7:N-5).-1] + (1/24)B[(7:N-5).-2]);
(-( 1/6)B[(7:N-4).+1] - (1/2)B[(7:N-4) ] - (1/2)B[(7:N-4).-1] - (1/6)B[(7:N-4).-2]);
(+( 1/8)B[(7:N-3) ] - (1/6)B[(7:N-3).-1] + (1/8)B[(7:N-3).-2]);
]
M = sparse([I_M0[:];I_M;I_MN[:]], [J_M0[:];J_M;J_MN[:]],
[V_M0[:];V_M;V_MN[:]])
elseif p == 6
bhinv = [43200/13649 8640/12013 4320/2711 4320/5359 8640/7877 43200/43801];
BS = [25/12 -4 3 -4/3 1/4];
V_M0 = zeros(9,9)
(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12) = B[1:12]
V_M0[1, 1] = 0.79126675946955820939b1 + 0.29684720906380007429b2 + 0.0031855190887964290152b3 + 0.016324040425909519534b4 + 0.031603022440944150877b5 + 0.031679647480161052996b6 + 0.031485777339472539205b7
V_M0[1, 2] = V_M0[2, 1] = -1.0166893393503381444b1 - 0.028456273704916113690b3 - 0.041280298383492988198b4 - 0.13922814516201405075b5 - 0.11957773256112017666b6 - 0.11942677565293334109b7
V_M0[1, 3] = V_M0[3, 1] = 0.070756429372437150463b1 - 0.18454761060241510503b2 - 0.043641631471118923470b4 + 0.24323679072077324609b5 + 0.15821270735372154440b6 + 0.16023485783647863076b7
V_M0[1, 4] = V_M0[4, 1] = 0.22519915328913532127b1 - 0.16627487110970548953b2 + 0.027105309616486712977b3 - 0.19166461859684399091b5 - 0.076841171601990145944b6 - 0.082195869498316975759b7
V_M0[1, 5] = V_M0[5, 1] = -0.052244034642020563167b1 + 0.044400639485098762210b2 - 0.0010239765473093878745b3 + 0.074034846453161740905b4 + 0.012416255689984968954b6 + 0.071886528478926012827b5 + 0.013793629971047355034b7
V_M0[1, 6] = V_M0[6, 1] = -0.018288968138771973527b1 + 0.0095746331632217580607b2 - 0.00081057845305764042779b3 - 0.0073488455877755196984b4 + 0.010636019497239069970b5 - 0.013159670383826183824b6 - 0.021179364788387535246b7
V_M0[1, 7] = V_M0[7, 1] = 0.0019118885633161709274b4 - 0.040681303555291499361b5 + 0.013196749810737491670b6 + 0.025572665181237836763b7
V_M0[1, 8] = V_M0[8, 1] = 0.015596528711367857640b5 - 0.0064861841573315378995b6 - 0.0091103445540363197401b7
V_M0[1, 9] = V_M0[9, 1] = 0.00055939836966298630593b6 - 0.0013848225351007963723b5 + 0.00082542416543781006633b7
V_M0[2, 2] = 1.3063321571116676286b1 + 0.25420017604573457435b3 + 0.10438978280925626095b4 + 0.66723280210321129509b5 + 0.46818193597227494411b6 + 0.46764154101958369201b7
V_M0[2, 3] = V_M0[3, 2] = -0.090914102699924646049b1 + 0.11036113131714764253b4 - 1.2903975449975188870b5 - 0.66396052487350447871b6 - 0.66159744640052061842b7
V_M0[2, 4] = V_M0[4, 2] = -0.28935573956534316666b1 - 0.24213200040645927216b3 + 1.1876702550280310277b5 + 0.39565981499041363328b6 + 0.38600489217558000007b7
V_M0[2, 5] = V_M0[5, 2] = 0.067127744758037639890b1 + 0.0091471926820756301800b3 - 0.18721961430038080217b4 - 0.13193585588531745301b6 - 0.48715757368119118874b5 - 0.10475163122754481381b7
V_M0[2, 6] = V_M0[6, 2] = 0.023499279745900688694b1 + 0.0072409053835651813164b3 + 0.018583789963916794487b4 - 0.092896161339386761743b5 + 0.12235132704188076670b6 + 0.11135203204362950339b7
V_M0[2, 7] = V_M0[7, 2] = -0.0048347914064469075906b4 + 0.23106838326878204031b5 - 0.10807741421960079917b6 - 0.11815617764273433354b7
V_M0[2, 8] = V_M0[8, 2] = -0.083681414344034553537b5 + 0.040934994667670546616b6 + 0.042746419676364006921b7
V_M0[2, 9] = V_M0[9, 2] = -0.0035765451326969831434b6 + 0.0073893991241210786821b5 - 0.0038128539914240955387b7
V_M0[3, 3] = 0.0063271611471368738078b1 + 0.11473182007158685275b2 + 0.11667405542796800075b4 + 2.7666108082854440372b5 + 1.0709206899608171042b6 + 1.0131613910329730572b7
V_M0[3, 4] = V_M0[4, 3] = 0.020137694138847972466b1 + 0.10337179946308864017b2 - 2.9132216211517427243b5 - 0.87558073434822622598b6 - 0.69099571834888124265b7
V_M0[3, 5] = V_M0[5, 3] = -0.0046717510915754628683b1 - 0.027603533656377128278b2 - 0.19792902986208699745b4 + 0.54029853383734330523b6 + 1.2391775930319110779b5 + 0.26280380502473582273b7
V_M0[3, 6] = V_M0[6, 3] = -0.0016354308669218878195b1 - 0.0059524752758832596197b2 + 0.019646827777442752194b4 + 0.32366400126390466006b5 - 0.46595166932288709739b6 - 0.22172727209417368594b7
V_M0[3, 7] = V_M0[7, 3] = -0.0051113531893524745496b4 - 0.53558781637747543460b5 + 0.33283351044897389336b6 + 0.20786565911785401579b7
V_M0[3, 8] = V_M0[8, 3] = 0.18243281741342895622b5 - 0.10598160301968184459b6 - 0.076451214393747111630b7
V_M0[3, 9] = V_M0[9, 3] = 0.0092090899634437994856b6 - 0.015915028188724931671b5 + 0.0067059382252811321853b7
V_M0[4, 4] = 0.064092997759871869867b1 + 0.093136576388046999489b2 + 0.23063676246347492291b3 + 3.6894403082837166203b5 + 1.1905503386876088738b6 + 0.59124795468888565194b7
V_M0[4, 5] = V_M0[5, 4] = -0.014868958192656041286b1 - 0.024870405993901607642b2 - 0.0087129289077117541871b3 - 1.2635078373718242057b6 - 0.30583173978439973269b7 - 1.4706919260458029548b5
V_M0[4, 6] = V_M0[6, 4] = -0.0052051474298559556576b1 - 0.0053630987475285424890b2 - 0.0068971427657906095463b3 - 0.78575245216674501017b5 + 0.22911480054237346001b7 + 0.99770643562927505292b6
V_M0[4, 7] = V_M0[7, 4] = 0.66972974880676622652b5 - 0.50132473560721279390b6 - 0.17951612431066454373b7
V_M0[4, 8] = V_M0[8, 4] = -0.20229090601117515652b5 + 0.14534218580636584986b6 + 0.056948720204809306656b7
V_M0[4, 9] = V_M0[9, 4] = -0.012004296184410038337b6 - 0.0047769156693859238415b7 + 0.016781211853795962179b5
V_M0[5, 5] = 0.0034494550959102336252b1 + 0.0066411834994278261016b2 + 0.00032915450832718628585b3 + 0.33577217075764772000b4 + 2.0964133295790264390b6 + 0.23173232041831268550b7 + 0.0061078257643682645765b8 + 0.71091258506833766956b5
V_M0[5, 6] = V_M0[6, 5] = 0.0012075440723041938061b1 + 0.0014321166657521476075b2 + 0.00026055826461832559573b3 - 0.033329411132516353908b4 - 0.28082416973855326836b7 - 0.027209080835250836084b8 + 0.10458654356829219874b5 - 1.3484369866671155432b6
V_M0[5, 7] = V_M0[7, 5] = 0.0086710380841746926251b4 + 0.17360734113554285637b6 + 0.053313621252876254126b8 - 0.24249352624045263018b5 + 0.15690152576785882706b7
V_M0[5, 8] = V_M0[8, 5] = -0.086316839802171222760b6 + 0.026988423604709992435b7 + 0.080981941477156510853b5 - 0.032764636390806391639b8
V_M0[5, 9] = V_M0[9, 5] = 0.0074620594845308550733b6 - 0.00081216403616686789496b7 + 0.00055227020881270902093b8 - 0.0072021656571766961993b5
V_M0[6, 6] = 0.00042272261734493450425b1 + 0.00030882419443789644048b2 + 0.00020625757066474306202b3 + 0.0033083434042009682567b4 + 0.58280470164050018158b5 + 0.80541742203662154736b7 + 0.13383632334100334433b8 + 0.0055555555555555555556b9 + 1.1903620718618930511b6
V_M0[6, 7] = V_M0[7, 6] = -0.00086070442526864133026b4 - 0.17480747086739049893b5 - 0.31325448501150501650b8 - 0.025000000000000000000b9 - 0.31691663053104292713b7 - 0.66916070916479291611b6
V_M0[6, 8] = V_M0[8, 6] = 0.033546617916933521087b5 - 0.33436200223869714050b7 + 0.050000000000000000000b9 + 0.21697906098076027508b6 + 0.18383632334100334433b8
V_M0[6, 9] = V_M0[9, 6] = 0.029125184768230046430b7 + 0.022790919164749163916b8 - 0.030689859975187405305b6 - 0.0017817995133473605962b5 - 0.030555555555555555556b9
V_M0[7, 7] = 0.00022392237357715991790b4 + 0.12754377854309566738b5 + 1.0116994839296081646b6 + 0.96988172751725752475b8 + 0.12500000000000000000b9 + 0.0055555555555555555556b10 + 0.48231775430312815001b7
V_M0[7, 8] = V_M0[8, 7] = -0.037841139730330129499b5 - 0.29975568851348273616b6 - 0.30000000000000000000b9 - 0.025000000000000000000b10 - 0.39914868674468211784b7 - 0.43825448501150501650b8
V_M0[7, 9] = V_M0[9, 7] = 0.046981462180226839339b6 - 0.29668637874712374587b8 + 0.050000000000000000000b10 + 0.17163557041460064817b7 + 0.0030693461522962583624b5 + 0.17500000000000000000b9
V_M0[8, 8] = 0.012303289427168044554b5 + 0.11836475296458983325b6 + 0.94105118982279433342b7 + 0.95000000000000000000b9 + 0.12500000000000000000b10 + 0.0055555555555555555556b11 + 0.56994743445211445545b8
V_M0[8, 9] = V_M0[9, 8] = -0.023080678926719163396b6 - 0.29866250537751494972b7 - 0.30000000000000000000b10 - 0.025000000000000000000b11 - 0.0010477348605150508026b5 - 0.42720908083525083608b8 - 0.42500000000000000000b9
V_M0[9, 9] = 0.0051393702211491099770b6 + 0.12477232150094220014b7 + 0.95055227020881270902b8 + 0.95000000000000000000b10 + 0.12500000000000000000b11 + 0.0055555555555555555556b12 + 0.000091593624651536418269b5 + 0.56111111111111111111b9
I_M0 = (1:9) * ones(1,9)
J_M0 = I_M0'
V_MN = zeros(9,9)
(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12) = B[N+1:-1:N-10]
V_MN[9, 9] = 0.79126675946955820939b1 + 0.29684720906380007429b2 + 0.0031855190887964290152b3 + 0.016324040425909519534b4 + 0.031603022440944150877b5 + 0.031679647480161052996b6 + 0.031485777339472539205b7
V_MN[9, 8] = V_MN[8, 9] = -1.0166893393503381444b1 - 0.028456273704916113690b3 - 0.041280298383492988198b4 - 0.13922814516201405075b5 - 0.11957773256112017666b6 - 0.11942677565293334109b7
V_MN[9, 7] = V_MN[7, 9] = 0.070756429372437150463b1 - 0.18454761060241510503b2 - 0.043641631471118923470b4 + 0.24323679072077324609b5 + 0.15821270735372154440b6 + 0.16023485783647863076b7
V_MN[9, 6] = V_MN[6, 9] = 0.22519915328913532127b1 - 0.16627487110970548953b2 + 0.027105309616486712977b3 - 0.19166461859684399091b5 - 0.076841171601990145944b6 - 0.082195869498316975759b7
V_MN[9, 5] = V_MN[5, 9] = -0.052244034642020563167b1 + 0.044400639485098762210b2 - 0.0010239765473093878745b3 + 0.074034846453161740905b4 + 0.012416255689984968954b6 + 0.071886528478926012827b5 + 0.013793629971047355034b7
V_MN[9, 4] = V_MN[4, 9] = -0.018288968138771973527b1 + 0.0095746331632217580607b2 - 0.00081057845305764042779b3 - 0.0073488455877755196984b4 + 0.010636019497239069970b5 - 0.013159670383826183824b6 - 0.021179364788387535246b7
V_MN[9, 3] = V_MN[3, 9] = 0.0019118885633161709274b4 - 0.040681303555291499361b5 + 0.013196749810737491670b6 + 0.025572665181237836763b7
V_MN[9, 2] = V_MN[2, 9] = 0.015596528711367857640b5 - 0.0064861841573315378995b6 - 0.0091103445540363197401b7
V_MN[9, 1] = V_MN[1, 9] = 0.00055939836966298630593b6 - 0.0013848225351007963723b5 + 0.00082542416543781006633b7
V_MN[8, 8] = 1.3063321571116676286b1 + 0.25420017604573457435b3 + 0.10438978280925626095b4 + 0.66723280210321129509b5 + 0.46818193597227494411b6 + 0.46764154101958369201b7
V_MN[8, 7] = V_MN[7, 8] = -0.090914102699924646049b1 + 0.11036113131714764253b4 - 1.2903975449975188870b5 - 0.66396052487350447871b6 - 0.66159744640052061842b7
V_MN[8, 6] = V_MN[6, 8] = -0.28935573956534316666b1 - 0.24213200040645927216b3 + 1.1876702550280310277b5 + 0.39565981499041363328b6 + 0.38600489217558000007b7
V_MN[8, 5] = V_MN[5, 8] = 0.067127744758037639890b1 + 0.0091471926820756301800b3 - 0.18721961430038080217b4 - 0.13193585588531745301b6 - 0.48715757368119118874b5 - 0.10475163122754481381b7
V_MN[8, 4] = V_MN[4, 8] = 0.023499279745900688694b1 + 0.0072409053835651813164b3 + 0.018583789963916794487b4 - 0.092896161339386761743b5 + 0.12235132704188076670b6 + 0.11135203204362950339b7
V_MN[8, 3] = V_MN[3, 8] = -0.0048347914064469075906b4 + 0.23106838326878204031b5 - 0.10807741421960079917b6 - 0.11815617764273433354b7
V_MN[8, 2] = V_MN[2, 8] = -0.083681414344034553537b5 + 0.040934994667670546616b6 + 0.042746419676364006921b7
V_MN[8, 1] = V_MN[1, 8] = -0.0035765451326969831434b6 + 0.0073893991241210786821b5 - 0.0038128539914240955387b7
V_MN[7, 7] = 0.0063271611471368738078b1 + 0.11473182007158685275b2 + 0.11667405542796800075b4 + 2.7666108082854440372b5 + 1.0709206899608171042b6 + 1.0131613910329730572b7
V_MN[7, 6] = V_MN[6, 7] = 0.020137694138847972466b1 + 0.10337179946308864017b2 - 2.9132216211517427243b5 - 0.87558073434822622598b6 - 0.69099571834888124265b7
V_MN[7, 5] = V_MN[5, 7] = -0.0046717510915754628683b1 - 0.027603533656377128278b2 - 0.19792902986208699745b4 + 0.54029853383734330523b6 + 1.2391775930319110779b5 + 0.26280380502473582273b7
V_MN[7, 4] = V_MN[4, 7] = -0.0016354308669218878195b1 - 0.0059524752758832596197b2 + 0.019646827777442752194b4 + 0.32366400126390466006b5 - 0.46595166932288709739b6 - 0.22172727209417368594b7
V_MN[7, 3] = V_MN[3, 7] = -0.0051113531893524745496b4 - 0.53558781637747543460b5 + 0.33283351044897389336b6 + 0.20786565911785401579b7
V_MN[7, 2] = V_MN[2, 7] = 0.18243281741342895622b5 - 0.10598160301968184459b6 - 0.076451214393747111630b7
V_MN[7, 1] = V_MN[1, 7] = 0.0092090899634437994856b6 - 0.015915028188724931671b5 + 0.0067059382252811321853b7
V_MN[6, 6] = 0.064092997759871869867b1 + 0.093136576388046999489b2 + 0.23063676246347492291b3 + 3.6894403082837166203b5 + 1.1905503386876088738b6 + 0.59124795468888565194b7
V_MN[6, 5] = V_MN[5, 6] = -0.014868958192656041286b1 - 0.024870405993901607642b2 - 0.0087129289077117541871b3 - 1.2635078373718242057b6 - 0.30583173978439973269b7 - 1.4706919260458029548b5
V_MN[6, 4] = V_MN[4, 6] = -0.0052051474298559556576b1 - 0.0053630987475285424890b2 - 0.0068971427657906095463b3 - 0.78575245216674501017b5 + 0.22911480054237346001b7 + 0.99770643562927505292b6
V_MN[6, 3] = V_MN[3, 6] = 0.66972974880676622652b5 - 0.50132473560721279390b6 - 0.17951612431066454373b7
V_MN[6, 2] = V_MN[2, 6] = -0.20229090601117515652b5 + 0.14534218580636584986b6 + 0.056948720204809306656b7
V_MN[6, 1] = V_MN[1, 6] = -0.012004296184410038337b6 - 0.0047769156693859238415b7 + 0.016781211853795962179b5
V_MN[5, 5] = 0.0034494550959102336252b1 + 0.0066411834994278261016b2 + 0.00032915450832718628585b3 + 0.33577217075764772000b4 + 2.0964133295790264390b6 + 0.23173232041831268550b7 + 0.0061078257643682645765b8 + 0.71091258506833766956b5
V_MN[5, 4] = V_MN[4, 5] = 0.0012075440723041938061b1 + 0.0014321166657521476075b2 + 0.00026055826461832559573b3 - 0.033329411132516353908b4 - 0.28082416973855326836b7 - 0.027209080835250836084b8 + 0.10458654356829219874b5 - 1.3484369866671155432b6
V_MN[5, 3] = V_MN[3, 5] = 0.0086710380841746926251b4 + 0.17360734113554285637b6 + 0.053313621252876254126b8 - 0.24249352624045263018b5 + 0.15690152576785882706b7
V_MN[5, 2] = V_MN[2, 5] = -0.086316839802171222760b6 + 0.026988423604709992435b7 + 0.080981941477156510853b5 - 0.032764636390806391639b8
V_MN[5, 1] = V_MN[1, 5] = 0.0074620594845308550733b6 - 0.00081216403616686789496b7 + 0.00055227020881270902093b8 - 0.0072021656571766961993b5
V_MN[4, 4] = 0.00042272261734493450425b1 + 0.00030882419443789644048b2 + 0.00020625757066474306202b3 + 0.0033083434042009682567b4 + 0.58280470164050018158b5 + 0.80541742203662154736b7 + 0.13383632334100334433b8 + 0.0055555555555555555556b9 + 1.1903620718618930511b6
V_MN[4, 3] = V_MN[3, 4] = -0.00086070442526864133026b4 - 0.17480747086739049893b5 - 0.31325448501150501650b8 - 0.025000000000000000000b9 - 0.31691663053104292713b7 - 0.66916070916479291611b6
V_MN[4, 2] = V_MN[2, 4] = 0.033546617916933521087b5 - 0.33436200223869714050b7 + 0.050000000000000000000b9 + 0.21697906098076027508b6 + 0.18383632334100334433b8
V_MN[4, 1] = V_MN[1, 4] = 0.029125184768230046430b7 + 0.022790919164749163916b8 - 0.030689859975187405305b6 - 0.0017817995133473605962b5 - 0.030555555555555555556b9
V_MN[3, 3] = 0.00022392237357715991790b4 + 0.12754377854309566738b5 + 1.0116994839296081646b6 + 0.96988172751725752475b8 + 0.12500000000000000000b9 + 0.0055555555555555555556b10 + 0.48231775430312815001b7
V_MN[3, 2] = V_MN[2, 3] = -0.037841139730330129499b5 - 0.29975568851348273616b6 - 0.30000000000000000000b9 - 0.025000000000000000000b10 - 0.39914868674468211784b7 - 0.43825448501150501650b8
V_MN[3, 1] = V_MN[1, 3] = 0.046981462180226839339b6 - 0.29668637874712374587b8 + 0.050000000000000000000b10 + 0.17163557041460064817b7 + 0.0030693461522962583624b5 + 0.17500000000000000000b9
V_MN[2, 2] = 0.012303289427168044554b5 + 0.11836475296458983325b6 + 0.94105118982279433342b7 + 0.95000000000000000000b9 + 0.12500000000000000000b10 + 0.0055555555555555555556b11 + 0.56994743445211445545b8
V_MN[2, 1] = V_MN[1, 2] = -0.023080678926719163396b6 - 0.29866250537751494972b7 - 0.30000000000000000000b10 - 0.025000000000000000000b11 - 0.0010477348605150508026b5 - 0.42720908083525083608b8 - 0.42500000000000000000b9
V_MN[1, 1] = 0.0051393702211491099770b6 + 0.12477232150094220014b7 + 0.95055227020881270902b8 + 0.95000000000000000000b10 + 0.12500000000000000000b11 + 0.0055555555555555555556b12 + 0.000091593624651536418269b5 + 0.56111111111111111111b9
I_MN = (N-7:N+1) * ones(1,9)
J_MN = I_MN'
rp3 = 10:N-5
rp2 = 10:N-6
rp1 = 10:N-7
r_0 = 10:N-8
rm1 = 9:N-8
rm2 = 8:N-8
rm3 = 7:N-8
I_M = [rp3;
rp2;
rp1;
r_0;
rm1;
rm2;
rm3]
J_M = [rp3 .- 3;
rp2 .- 2;
rp1 .- 1;
r_0 ;
rm1 .+ 1;
rm2 .+ 2;
rm3 .+ 3]
# Bug here?
V_M = [(- (11/360)B[rp3 .- 3] + (1/40)B[rp3 .- 2] + ( 1/40)B[rp3 .- 1] - ( 11/360)B[rp3] );
(+ ( 1/ 20)B[rp2 .- 3] + (7/40)B[rp2 .- 2] - ( 3/10)B[rp2 .- 1] + ( 7/ 40)B[rp2] + ( 1/20)B[rp2 .+ 1] );
(- ( 1/ 40)B[rp1 .- 3] - (3/10)B[rp1 .- 2] - (17/40)B[rp1 .- 1] - ( 17/ 40)B[rp1] - ( 3/10)B[rp1 .+ 1] - (1/40)B[rp1 .+ 2] );
(+ ( 1/180)B[r_0 .- 3] + (1/ 8)B[r_0 .- 2] + (19/20)B[r_0 .- 1] + (101/180)B[r_0] + (19/20)B[r_0 .+ 1] + (1/ 8)B[r_0 .+ 2] + ( 1/180)B[r_0 .+ 3]);
( - (1/40)B[rm1 .- 2] - ( 3/10)B[rm1 .- 1] - ( 17/ 40)B[rm1] - (17/40)B[rm1 .+ 1] - (3/10)B[rm1 .+ 2] - ( 1/ 40)B[rm1 .+ 3]);
( ( 1/20)B[rm2 .- 1] + ( 7/ 40)B[rm2] - ( 3/10)B[rm2 .+ 1] + (7/40)B[rm2 .+ 2] + ( 1/ 20)B[rm2 .+ 3]);
( - ( 11/360)B[rm3] + ( 1/40)B[rm3 .+ 1] + (1/40)B[rm3 .+ 2] - (11/360)B[rm3 .+ 3]);
]
M = sparse([I_M0[:];I_M[:];I_MN[:]],
[J_M0[:];J_M[:];J_MN[:]],
[V_M0[:];V_M[:];V_MN[:]])
else
error(string("Operators for order ", p, " are not implemented"))
end
bm = length(bhinv)
Np = N+1
if(Np < 2*bm)
error("Grid not big enough to support the operator. Grid must have N >= ", max(bn,2*bm))
end
h = (xc[2] - xc[1]) / N
M = M/h
@assert h > 0
H_I = 1:Np
H_V = ones(Np)
H_V[1:bm] = bhinv[:]
H_V[Np-bm+1:Np] = bhinv[end:-1:1]
HI = sparse(H_I, H_I, H_V / h)
H = sparse(H_I, H_I, h ./ H_V)
S0 = sparse(ones(length(BS)), 1:length(BS), -B[1]*BS[:]/h, N+1, N+1);
SN = sparse((N+1) * ones(length(BS)), (N+1):-1:(N+2-length(BS)),
B[N+1]*BS[:]/h, N+1, N+1);
D = HI * (-M + SN - S0)
r = range(xc[1], stop=xc[2], length=N+1)
(D, S0, SN, HI, H, M, r)
end
#}}}
function D2_remainder_parameters(p)
if p == 2
l = 2
β = 0.363636363
α = 1 / 2
elseif p == 4
l = 4
β = 0.2505765857
α = 17 / 48
elseif p == 6
l = 7
β = 0.1878687080
α = 13649 / 43200
else
error("unknown order")
end
(l = l, α=α, β=β)
end