-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtarget_pipelined_wb.lua
314 lines (227 loc) · 9.4 KB
/
target_pipelined_wb.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
-- -*- Mode: LUA; tab-width: 2 -*-
MAX_ACK_LENGTH = 10;
MODE_CLASSIC=1
MODE_PIPELINED=2
function gen_pipelined_wb_ports(mode)
local ports = {
port(BIT, 0, "in", "rst_n_i", "", VPORT_WB),
port(BIT, 0, "in", "clk_sys_i", "", VPORT_WB),
};
if(address_bus_width > 0 ) then
table_join(ports, { port(SLV, address_bus_width, "in", "wb_adr_i", "", VPORT_WB) })
end
table_join(ports, {
port(SLV, DATA_BUS_WIDTH, "in", "wb_dat_i", "", VPORT_WB),
port(SLV, DATA_BUS_WIDTH, "out", "wb_dat_o", "", VPORT_WB),
port(BIT, 0, "in", "wb_cyc_i", "", VPORT_WB),
port(SLV, math.floor((DATA_BUS_WIDTH+7)/8), "in", "wb_sel_i", "", VPORT_WB),
port(BIT, 0, "in", "wb_stb_i", "", VPORT_WB),
port(BIT, 0, "in", "wb_we_i", "", VPORT_WB),
port(BIT, 0, "out", "wb_ack_o", "", VPORT_WB)
});
if(mode == MODE_PIPELINED) then
table_join(ports, { port(BIT, 0, "out", "wb_stall_o", "", VPORT_WB) });
end
if(periph.irqcount > 0) then
table_join(ports, { port(BIT, 0, "out" ,"wb_int_o", "", VPORT_WB); });
end
add_global_ports(ports);
end
function gen_pipelined_wb_signals(mode)
local width = math.max(1, address_bus_width);
local wb_sigs = { signal(SLV, MAX_ACK_LENGTH, "ack_sreg"),
signal(SLV, DATA_BUS_WIDTH, "rddata_reg"),
signal(SLV, DATA_BUS_WIDTH, "wrdata_reg"),
signal(SLV, DATA_BUS_WIDTH/8 , "bwsel_reg"),
signal(SLV, width, "rwaddr_reg"),
signal(BIT, 0, "ack_in_progress"),
signal(BIT, 0, "wr_int"),
signal(BIT, 0, "rd_int"),
signal(SLV, DATA_BUS_WIDTH, "allones"),
signal(SLV, DATA_BUS_WIDTH, "allzeros")
};
add_global_signals(wb_sigs);
end
-- generates the entire Wishbone bus access logic
function gen_bus_logic_pipelined_wb(mode)
local s;
gen_pipelined_wb_ports(mode);
gen_pipelined_wb_signals(mode);
foreach_reg(ALL_REG_TYPES, function(reg)
gen_abstract_code(reg);
end );
local resetcode={};
local ackgencode={};
local preackcode={};
foreach_field(function(field, reg)
table_join(resetcode, field.reset_code_main);
end );
foreach_reg(ALL_REG_TYPES, function(reg)
table_join(resetcode, reg.reset_code_main);
end );
foreach_reg({TYPE_REG}, function(reg)
foreach_subfield(reg, function(field, reg)
table_join(ackgencode, field.ackgen_code);
table_join(preackcode, field.ackgen_code_pre);
end);
table_join(ackgencode, reg.ackgen_code);
table_join(preackcode, reg.ackgen_code_pre);
end);
local fsmcode={};
foreach_reg({TYPE_REG}, function(reg)
local acklen = find_max(reg, "acklen");
local rcode={};
local wcode={};
foreach_subfield(reg, function(field, reg) table_join(wcode, field.write_code); end );
foreach_subfield(reg, function(field, reg) table_join(rcode, field.read_code); end );
local padcode = fill_unused_bits("rddata_reg", reg);
table_join(wcode, reg.write_code);
table_join(rcode, reg.read_code);
local rwcode = {
vif(vequal("wb_we_i" ,1), {
wcode,
});
rcode,
padcode
};
if(not (reg.dont_emit_ack_code == true)) then -- we don't want the main generator to mess with ACK line for this register
table_join(rwcode, { va(vi("ack_sreg", math.max(acklen-1, 0)), 1); } );
table_join(rwcode, { va("ack_in_progress", 1); });
end
if(regbank_address_bits > 0) then
rwcode = { vcase(reg.base, rwcode); };
end
table_join(fsmcode, rwcode);
end );
if(regbank_address_bits > 0) then
table_join(fsmcode, { vcasedefault({
vcomment("prevent the slave from hanging the bus on invalid address");
va("ack_in_progress", 1);
va(vi("ack_sreg", 0), 1);
}); });
fsmcode = { vswitch(vi("rwaddr_reg", regbank_address_bits - 1, 0), fsmcode); };
end
if(periph.ramcount > 0) then
local ramswitchcode = {};
if(periph.fifocount + periph.regcount > 0) then
-- append the register bank CASE statement if there are any registers or FIFOs
ramswitchcode = { vcase (0, fsmcode); };
end
foreach_reg({TYPE_RAM}, function(reg)
local acklen = csel(options.register_data_output, 1, 0);
table_join(ramswitchcode, { vcase(reg.select_bits , {
vif(vequal("rd_int" ,1), {
va(vi("ack_sreg", 0), 1);
}, {
va(vi("ack_sreg", acklen), 1);
});
va("ack_in_progress", 1);
} ); } );
end);
table_join(ramswitchcode, {
vcasedefault({
vcomment("prevent the slave from hanging the bus on invalid address");
va("ack_in_progress", 1);
va(vi("ack_sreg", 0), 1);
})
});
fsmcode = { vswitch(vi("rwaddr_reg", address_bus_width-1, address_bus_width - address_bus_select_bits), ramswitchcode); };
end
fsmcode = { vif(vand(vequal("wb_cyc_i", 1), vequal("wb_stb_i", 1)), { fsmcode } ); };
local code = {
vcomment("Some internal signals assignments. For (foreseen) compatibility with other bus standards.");
va("wrdata_reg", "wb_dat_i");
va("bwsel_reg", "wb_sel_i");
va("rd_int", vand("wb_cyc_i", vand("wb_stb_i", vnot("wb_we_i"))));
va("wr_int", vand("wb_cyc_i", vand("wb_stb_i", "wb_we_i")));
va("allones", vothers(1));
va("allzeros", vothers(0));
vcomment("");
vcomment("Main register bank access process.");
vsyncprocess("clk_sys_i", "rst_n_i", {
vreset(0, {
va("ack_sreg", 0);
va("ack_in_progress", 0);
va("rddata_reg", 0);
resetcode
});
vposedge ({
vcomment("advance the ACK generator shift register");
va(vi("ack_sreg", MAX_ACK_LENGTH-2, 0), vi("ack_sreg", MAX_ACK_LENGTH-1, 1));
va(vi("ack_sreg", MAX_ACK_LENGTH-1), 0);
vif(vequal("ack_in_progress", 1), {
vif(vequal(vi("ack_sreg", 0), 1), { ackgencode; va("ack_in_progress", 0); }, preackcode);
}, {
fsmcode
});
});
});
};
-- we have some RAMs in our slave?
if(periph.ramcount > 0) then
-- the data output is muxed between RAMs and register bank. Here we generate a combinatorial mux if we don't want the output to be registered. This gives us
-- memory access time of 2 clock cycles. Otherwise the ram output is handled by the main process.
if(not options.register_data_output) then
local sens_list = {"rddata_reg","rwaddr_reg"};
local mux_switch_code = {};
local mux_code = {vswitch(vi("rwaddr_reg", address_bus_width-1, address_bus_width - address_bus_select_bits), mux_switch_code); };
local output_mux_process = {vcomment("Data output multiplexer process"); vcombprocess(sens_list, mux_code);};
foreach_reg({TYPE_RAM}, function(reg)
table.insert(sens_list, reg.full_prefix.."_rddata_int");
local assign_code = { va(vi("wb_dat_o", reg.width-1, 0), reg.full_prefix.."_rddata_int"); };
if(reg.width < DATA_BUS_WIDTH) then
table_join(assign_code, { va(vi("wb_dat_o", DATA_BUS_WIDTH-1, reg.width), 0); });
end
table_join(mux_switch_code, { vcase(reg.select_bits, assign_code ); } );
end);
table.insert(sens_list, "wb_adr_i");
table_join(mux_switch_code, {vcasedefault(va("wb_dat_o", "rddata_reg")); } );
table_join(code, output_mux_process);
end
-- now generate an address decoder for the RAMs, driving rd_i and wr_i lines.
local sens_list = { "wb_adr_i", "rd_int", "wr_int" };
local proc_body = { };
foreach_reg({TYPE_RAM}, function(reg)
-- table.insert(sens_list, reg.full_prefix.."_rddata_int");
table_join(proc_body, {vif(vequal(vi("wb_adr_i", address_bus_width-1, address_bus_width - address_bus_select_bits), reg.select_bits), {
va(reg.full_prefix.."_rd_int", "rd_int");
va(reg.full_prefix.."_wr_int", "wr_int");
}, {
va(reg.full_prefix.."_wr_int", 0);
va(reg.full_prefix.."_rd_int", 0);
}); });
end);
table_join(code, {vcomment("Read & write lines decoder for RAMs"); vcombprocess(sens_list, proc_body); });
else -- no RAMs in design? wire rddata_reg directly to wb_data_o
table_join(code, {vcomment("Drive the data output bus"); va("wb_dat_o", "rddata_reg") } );
end
foreach_reg(ALL_REG_TYPES,
function(reg)
ex_code = {}
if(reg.extra_code ~= nil) then
table_join(ex_code, {vcomment("extra code for reg/fifo/mem: "..reg.name);});
table_join(ex_code, reg.extra_code);
end
foreach_subfield(reg,
function(field, reg)
if (field.extra_code ~= nil) then
table_join(ex_code, {vcomment(field.name); field.extra_code});
end
end );
if(reg.optional == nil) then
table_join(code, ex_code)
else
table_join(code, {vgenerate_if(vnot(vequal(reg.optional, 0)), ex_code )} );
end
end);
if(address_bus_width > 0) then
table_join(code, { va("rwaddr_reg", "wb_adr_i"); });
else
table_join(code, { va("rwaddr_reg", vothers(0)); });
end
table_join(code, { va("wb_stall_o", vand(vnot(vi("ack_sreg", 0)), vand("wb_stb_i","wb_cyc_i")))});
table_join(code, { vcomment("ACK signal generation. Just pass the LSB of ACK counter.");
va("wb_ack_o", vi("ack_sreg", 0));
});
return code;
end