-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpsol_models.py
144 lines (137 loc) · 6.12 KB
/
psol_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torchvision
import torch.nn as nn
import torch
def copy_parameters(model, pretrained_dict):
model_dict = model.state_dict()
if 'module' in list(pretrained_dict.keys())[0]:
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict and pretrained_dict[k].size()==model_dict[k[7:]].size()}
for k, v in pretrained_dict.items():
print(k)
else:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and pretrained_dict[k].size() == model_dict[k].size()}
for k, v in pretrained_dict.items():
print(k)
model_dict.update(pretrained_dict)
missing, unexpected = model.load_state_dict(model_dict)
return model
class VGGGAP(nn.Module):
def __init__(self, pretrained=True, num_classes=200):
super(VGGGAP,self).__init__()
self.features = torchvision.models.vgg16(pretrained=pretrained).features
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.classifier = nn.Sequential((nn.Linear(512,512),nn.ReLU(),nn.Linear(512,num_classes),nn.Sigmoid()))
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0),-1)
x = self.classifier(x)
return x
class VGG16(nn.Module):
def __init__(self, pretrained=True, num_classes=200):
super(VGG16,self).__init__()
self.features = torchvision.models.vgg16(pretrained=pretrained).features
temp_classifier = torchvision.models.vgg16(pretrained=pretrained).classifier
removed = list(temp_classifier.children())
removed = removed[:-1]
temp_layer = nn.Sequential(nn.Linear(4096,512),nn.ReLU(),nn.Linear(512,num_classes),nn.Sigmoid())
removed.append(temp_layer)
self.classifier = nn.Sequential(*removed)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0),-1)
x = self.classifier(x)
return x
def choose_locmodel(model_name, pretrained=False):
if model_name == 'densenet161':
model = torchvision.models.densenet161(pretrained=True)
model.classifier = nn.Sequential(
nn.Linear(2208, 512),
nn.ReLU(),
nn.Linear(512, 4),
nn.Sigmoid()
)
if pretrained:
model = copy_parameters(model, torch.load('./psol/densenet161loc.pth.tar'))
elif model_name == 'resnet50':
model = torchvision.models.resnet50(pretrained=True, num_classes=1000)
model.fc = nn.Sequential(
nn.Linear(2048, 512),
nn.ReLU(),
nn.Linear(512, 4),
nn.Sigmoid()
)
if pretrained:
model = copy_parameters(model, torch.load('resnet50loc.pth.tar'))
elif model_name == 'vgggap':
model = VGGGAP(pretrained=True, num_classes=4)
if pretrained:
model = copy_parameters(model, torch.load('vgggaploc.pth.tar'))
elif model_name == 'vgg16':
model = VGG16(pretrained=True, num_classes=4)
if pretrained:
model = copy_parameters(model, torch.load('./psol/vgg16loc.pth.tar'))
elif model_name == 'inceptionv3':
#need for rollback inceptionv3 official code
pass
else:
raise ValueError('Do not have this model currently!')
return model
def choose_clsmodel(model_name, pretrained=False, num_classes=1000):
# for ImageNet dataset
if num_classes == 1000:
if model_name == 'vgg16':
cls_model = torchvision.models.vgg16(pretrained=True)
elif model_name == 'inceptionv3':
cls_model = torchvision.models.inception_v3(pretrained=True, aux_logits=True, transform_input=True)
elif model_name == 'resnet50':
cls_model = torchvision.models.resnet50(pretrained=True)
elif model_name == 'densenet161':
cls_model = torchvision.models.densenet161(pretrained=True)
elif model_name == 'dpn131':
cls_model = torch.hub.load('rwightman/pytorch-dpn-pretrained', 'dpn131', pretrained=True,test_time_pool=True)
elif model_name == 'efficientnetb7':
from efficientnet_pytorch import EfficientNet
cls_model = EfficientNet.from_pretrained('efficientnet-b7')
# for datasets other than ImageNet
else:
if model_name == 'vgg16':
cls_model = torchvision.models.vgg16(pretrained=True)
### replace classifier
# temp_classifier = cls_model.classifier
# removed = list(temp_classifier.children())
# removed = removed[:-1]
# temp_layer = nn.Sequential(nn.Linear(4096,512),nn.ReLU(),nn.Linear(512, num_classes))
# removed.append(temp_layer)
# cls_model.classifier = nn.Sequential(*removed)
cls_model.avgpool = nn.AdaptiveAvgPool2d(output_size=(1,1))
cls_model.classifier = nn.Sequential(
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, num_classes)
)
# load pretrained for inference
if pretrained:
cls_model = copy_parameters(cls_model, torch.load('vgg16cls.pth.tar'))
elif model_name == 'resnet50':
cls_model = torchvision.models.resnet50(pretrained=True)
# replace classifier
cls_model.fc = nn.Linear(2048, num_classes)
for m in cls_model.fc.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
# load pretrained for inference
if pretrained:
cls_model = copy_parameters(cls_model, torch.load('resnet50cls.pth.tar'))
elif model_name == 'densenet161':
cls_model = torchvision.models.densenet161(pretrained=True)
# replace classifier
cls_model.classifier = nn.Sequential(
nn.Linear(2208, 512),
nn.ReLU(),
nn.Linear(512, num_classes)
)
# load pretrained for inference
if pretrained:
cls_model = copy_parameters(cls_model, torch.load('densenet161cls.pth.tar'))
return cls_model