forked from JunweiSUN/AutoGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_local_test.py
116 lines (86 loc) · 3.36 KB
/
run_local_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""run local test in starting kit"""
# pylint: disable=logging-fstring-interpolation
import argparse
import logging
import os
from os.path import join, isdir
import shutil
from multiprocessing import Process
VERBOSITY_LEVEL = 'WARNING'
logging.basicConfig(
level=getattr(logging, VERBOSITY_LEVEL),
format='%(asctime)s %(levelname)s %(filename)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
def _here(*args):
here = os.path.dirname(os.path.realpath(__file__))
return os.path.join(here, *args)
def _ingestion_program(starting_kit_dir):
return join(starting_kit_dir, 'ingestion', 'ingestion.py')
def _scoring_program(starting_kit_dir):
return join(starting_kit_dir, 'scoring', 'score.py')
def remove_dir(output_dir):
"""Remove the directory `output_dir`.
This aims to clean existing output of last run of local test.
"""
if isdir(output_dir):
logging.info(
f"Cleaning existing output directory of last run: {output_dir}")
shutil.rmtree(output_dir)
def _clean(starting_kit_dir):
ingestion_output_dir = join(starting_kit_dir, 'sample_result_submission')
score_dir = os.path.join(starting_kit_dir, 'scoring_output')
remove_dir(ingestion_output_dir)
remove_dir(score_dir)
def run(dataset_dir, code_dir):
"""run"""
# Current directory containing this script
starting_kit_dir = _here()
path_ingestion = _ingestion_program(starting_kit_dir)
path_scoring = _scoring_program(starting_kit_dir)
# Run ingestion and scoring at the same time
command_ingestion = (
'python '
# f'{path_ingestion} --dataset_dir={dataset_dir}/data '
f'{path_ingestion} --dataset_dir={dataset_dir}/train.data'
f' --code_dir={code_dir}')
command_scoring = (
# f'python {path_scoring} --solution_dir={dataset_dir}/solution')
f'python {path_scoring} --solution_dir={dataset_dir}')
def run_ingestion():
os.system(command_ingestion)
def run_scoring():
os.system(command_scoring)
ingestion_process = Process(name='ingestion', target=run_ingestion)
scoring_process = Process(name='scoring', target=run_scoring)
_clean(starting_kit_dir)
ingestion_process.start()
scoring_process.start()
def _parse_args():
default_starting_kit_dir = _here()
default_dataset_dir = join(default_starting_kit_dir, 'data', 'demo')
default_code_dir = join(default_starting_kit_dir, 'code_submission')
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_dir', type=str,
default=default_dataset_dir,
help="Directory storing the dataset, should contain"
"'data' and 'solution'")
parser.add_argument('--code_dir', type=str,
default=default_code_dir,
help="Directory storing the submission code "
"`model.py` and other necessary packages.")
args = parser.parse_args()
return args
def main():
"""main entry"""
args = _parse_args()
dataset_dir = args.dataset_dir
code_dir = args.code_dir
logging.info("#" * 50)
logging.info("Begin running local test using")
logging.info(f"code_dir = {code_dir}")
logging.info(f"dataset_dir = {dataset_dir}")
logging.info("#" * 50)
run(dataset_dir, code_dir)
if __name__ == '__main__':
main()