-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdata.py
220 lines (166 loc) · 8.67 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import numpy as np
import ujson
from torch.utils.data import Dataset
from scipy.spatial.transform import Rotation as R
class saicDataset(Dataset):
'''
Dataset class for our inhouse (SAIC) data
'''
def __init__(self, args, textio, root='./demo_data/', partition='train'):
self.npoints = args.num_points
self.aug = args.aug
self.partition = partition
self.root = root + partition+'/'
self.pc_ls=sorted(os.listdir(self.root),key=lambda x:eval(x.split("/")[-1].split("-")[-1].split(".")[0]))
self.scene_nbr=int(self.pc_ls[-1].split("-")[1].split("_")[0])
self.datapath={'sample':[]}
for idx in range(0,len(self.pc_ls)):
self.datapath['sample'].append(self.root+self.pc_ls[idx])
textio.cprint(self.partition + ': %d'%len(self.datapath['sample']))
def __getitem__(self, index):
sample = self.datapath['sample'][index]
with open(sample, 'rb') as fp:
data = ujson.load(fp)
data_1 = data["pc1"]
data_2 = data["pc2"]
## obtain groundtruth for multiple tasks during test
if self.partition =='test':
trans = np.linalg.inv(np.array(data["trans"]))
gt = np.array(data["gt"])
mask = np.array(data["mask"])
else:
trans = np.zeros((4,4))
gt = np.zeros((self.npoints,3))
mask = np.zeros(self.npoints)
interval = data["interval"]
pos1=np.vstack((data_1['car_loc_x'],data_1['car_loc_y'],data_1['car_loc_z'])).T.astype('float32')
pos2=np.vstack((data_2['car_loc_x'],data_2['car_loc_y'],data_2['car_loc_z'])).T.astype('float32')
vel1=np.array(data_1['car_vel_r']).astype('float32')
vel2=np.array(data_2['car_vel_r']).astype('float32')
rcs1=np.array(data_1['rcs']).astype('float32')
rcs2=np.array(data_2['rcs']).astype('float32')
power1=np.array(data_1['power']).astype('float32')
power2=np.array(data_2['power']).astype('float32')
feature1 = np.vstack((vel1,rcs1,power1)).T
feature2 = np.vstack((vel2,rcs2,power2)).T
## downsample to npoints to enable fast batch processing (not in test)
if self.partition!='test':
sample_idx1 = np.random.choice(pos1.shape[0], self.npoints, replace=False)
sample_idx2 = np.random.choice(pos2.shape[0], self.npoints, replace=False)
pos1 = pos1[sample_idx1, :]
pos2 = pos2[sample_idx2, :]
feature1 = feature1[sample_idx1, :]
feature2 = feature2[sample_idx2, :]
## data augmentation
if self.aug and self.partition not in ['test', 'val'] :
T_1 = np.eye(4).astype(np.float32)
T_2 = np.eye(4).astype(np.float32)
# rotation
yaw_1,pitch_1,roll_1 = np.random.uniform(-2,2,size=3)
yaw_2,pitch_2,roll_2 = np.random.uniform(-2,2,size=3)
angles_1 = [yaw_1, pitch_1,roll_1]
angles_2 = [yaw_2, pitch_2,roll_2]
rot1 = R.from_euler('ZYX', angles_1 , degrees=True)
rot_m1 = rot1.as_matrix()
rot2 = R.from_euler('ZYX', angles_2 , degrees=True)
rot_m2 = rot2.as_matrix()
# translation
shift_x1, shift_x2 = np.random.uniform(-0.1,0.1,size=2)
shift_y1, shift_y2 = np.random.uniform(-0.1,0.1,size=2)
shift_z1, shift_z2 = np.random.uniform(-0.05,0.05,size=2)
shift_1 = np.array([shift_x1,shift_y1,shift_z1])
shift_2 = np.array([shift_x2,shift_y2,shift_z2])
T_1[0:3,0:3] = rot_m1.astype(np.float32)
T_2[0:3,0:3] = rot_m2.astype(np.float32)
T_1[0:3,3] = shift_1.astype(np.float32)
T_2[0:3,3] = shift_2.astype(np.float32)
# apply the random transformation to points
pos1 = (np.matmul(T_1[0:3, 0:3], pos1.transpose()) + T_1[0:3,3:4]).transpose()
pos2 = (np.matmul(T_2[0:3, 0:3], pos2.transpose()) + T_2[0:3,3:4]).transpose()
return pos1, pos2, feature1, feature2, trans, gt, mask, interval
def __len__(self):
return len(self.datapath['sample'])
class vodDataset(Dataset):
'''
Dataset class for View-of-Delft dataset
Please modify this class according to data format used for scene flow
'''
def __init__(self, args, textio, root='./vod_data/', partition='train'):
self.npoints = args.num_points
self.aug = args.aug
self.partition = partition
self.root = root + partition+'/'
self.pc_ls=sorted(os.listdir(self.root),key=lambda x:eval(x.split("/")[-1].split("-")[-1].split(".")[0]))
self.scene_nbr=int(self.pc_ls[-1].split("-")[1].split("_")[0])
self.datapath={'sample':[]}
for idx in range(0,len(self.pc_ls)):
self.datapath['sample'].append(self.root+self.pc_ls[idx])
textio.cprint(self.partition + ': %d'%len(self.datapath['sample']))
def __getitem__(self, index):
sample = self.datapath['sample'][index]
with open(sample, 'rb') as fp:
data = ujson.load(fp)
data_1 = data["pc1"]
data_2 = data["pc2"]
## obtain groundtruth for multiple tasks during test
if self.partition =='test':
trans = np.linalg.inv(np.array(data["trans"]))
gt = np.array(data["gt"])
mask = np.array(data["mask"])
else:
trans = np.zeros((4,4))
gt = np.zeros((self.npoints,3))
mask = np.zeros(self.npoints)
interval = data["interval"]
pos1=np.vstack((data_1['car_loc_x'],data_1['car_loc_y'],data_1['car_loc_z'])).T.astype('float32')
pos2=np.vstack((data_2['car_loc_x'],data_2['car_loc_y'],data_2['car_loc_z'])).T.astype('float32')
vel1=np.array(data_1['car_vel_r']).astype('float32')
vel2=np.array(data_2['car_vel_r']).astype('float32')
rcs1=np.array(data_1['rcs']).astype('float32')
rcs2=np.array(data_2['rcs']).astype('float32')
power1=np.array(data_1['power']).astype('float32')
power2=np.array(data_2['power']).astype('float32')
feature1 = np.vstack((vel1,rcs1,power1)).T
feature2 = np.vstack((vel2,rcs2,power2)).T
## downsample to npoints to enable fast batch processing (not in test)
if self.partition!='test':
sample_idx1 = np.random.choice(pos1.shape[0], self.npoints, replace=False)
sample_idx2 = np.random.choice(pos2.shape[0], self.npoints, replace=False)
pos1 = pos1[sample_idx1, :]
pos2 = pos2[sample_idx2, :]
feature1 = feature1[sample_idx1, :]
feature2 = feature2[sample_idx2, :]
## data augmentation
if self.aug and self.partition not in ['test', 'val'] :
T_1 = np.eye(4).astype(np.float32)
T_2 = np.eye(4).astype(np.float32)
# rotation
yaw_1,pitch_1,roll_1 = np.random.uniform(-2,2,size=3)
yaw_2,pitch_2,roll_2 = np.random.uniform(-2,2,size=3)
angles_1 = [yaw_1, pitch_1,roll_1]
angles_2 = [yaw_2, pitch_2,roll_2]
rot1 = R.from_euler('ZYX', angles_1 , degrees=True)
rot_m1 = rot1.as_matrix()
rot2 = R.from_euler('ZYX', angles_2 , degrees=True)
rot_m2 = rot2.as_matrix()
# translation
shift_x1, shift_x2 = np.random.uniform(-0.1,0.1,size=2)
shift_y1, shift_y2 = np.random.uniform(-0.1,0.1,size=2)
shift_z1, shift_z2 = np.random.uniform(-0.05,0.05,size=2)
shift_1 = np.array([shift_x1,shift_y1,shift_z1])
shift_2 = np.array([shift_x2,shift_y2,shift_z2])
T_1[0:3,0:3] = rot_m1.astype(np.float32)
T_2[0:3,0:3] = rot_m2.astype(np.float32)
T_1[0:3,3] = shift_1.astype(np.float32)
T_2[0:3,3] = shift_2.astype(np.float32)
# apply the random transformation to points
pos1 = (np.matmul(T_1[0:3, 0:3], pos1.transpose()) + T_1[0:3,3:4]).transpose()
pos2 = (np.matmul(T_2[0:3, 0:3], pos2.transpose()) + T_2[0:3,3:4]).transpose()
return pos1, pos2, feature1, feature2, trans, gt, mask, interval
def __len__(self):
return len(self.datapath['sample'])
if __name__ == '__main__':
print('The file can not directly run!!!')