-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
234 lines (180 loc) · 8.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import torch
import copy
import random
from tqdm import tqdm
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import StepLR
from utils import *
from data import *
from models import *
import numpy as np
from losses import *
import argparse
from matplotlib import pyplot as plt
from main_util import train_one_epoch, plot_loss_epoch
from main_util import eval_scene_flow, eval_motion_seg
from vis_util import *
class IOStream:
def __init__(self, path):
self.f = open(path, 'a')
def cprint(self, text):
print(text)
self.f.write(text + '\n')
self.f.flush()
def close(self):
self.f.close()
def _init_(args):
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/' + args.exp_name):
os.makedirs('checkpoints/' + args.exp_name)
if not os.path.exists('checkpoints/' + args.exp_name + '/' + 'models'):
os.makedirs('checkpoints/' + args.exp_name + '/' + 'models')
os.system('cp main.py checkpoints' + '/' + args.exp_name + '/' + 'main.py.backup')
os.system('cp data.py checkpoints' + '/' + args.exp_name + '/' + 'data.py.backup')
def test(args, net, test_loader, textio):
net.eval()
num_pcs=0
vis_path_2D='checkpoints/'+args.exp_name+"/test_vis_2d/"
if not os.path.exists(vis_path_2D):
os.makedirs(vis_path_2D)
sf_metric = {'rne':0, '50-50 rne': 0, 'mov_rne': 0, 'stat_rne': 0,\
'sas': 0, 'ras': 0, 'epe': 0}
seg_metric = {'acc': 0, 'miou': 0, 'sen': 0}
for i, data in tqdm(enumerate(test_loader), total = len(test_loader)):
pc1, pc2, ft1, ft2, _, gt , mask, interval= data
pc1 = pc1.cuda().transpose(2,1).contiguous()
pc2 = pc2.cuda().transpose(2,1).contiguous()
ft1 = ft1.cuda().transpose(2,1).contiguous()
ft2 = ft2.cuda().transpose(2,1).contiguous()
mask = mask.cuda()
interval = interval.cuda().float()
gt = gt.cuda().float()
batch_size = pc1.size(0)
with torch.no_grad():
if args.model=='raflow' or args.model == 'raflow_vod':
_, pred_f, _, pred_m = net(pc1, pc2, ft1, ft2, interval)
## use estimated scene to warp point cloud 1
pc1_warp=pc1+pred_f
## Viualize the estimated scene flow
if args.vis:
visulize_result_2D(pc1, pc2, pc1_warp, num_pcs, vis_path_2D)
## evaluate the estimated results using ground truth
batch_res = eval_scene_flow(pc1, pred_f.transpose(2,1).contiguous(), gt, mask, args)
for metric in batch_res:
sf_metric[metric] += batch_size * batch_res[metric]
## evaluate the motion segmentation precision and recall
if args.model=='raflow' or args.model == 'raflow_vod':
seg_res = eval_motion_seg(pred_m, mask)
for metric in seg_res:
seg_metric[metric] += batch_size * seg_res[metric]
num_pcs+=batch_size
## print scene flow evaluation results
for metric in sf_metric:
textio.cprint('###The mean {}: {}###'.format(metric, sf_metric[metric]/num_pcs))
if args.model=='raflow' or args.model == 'raflow_vod':
## print motion seg evaluation results
for metric in seg_metric:
textio.cprint('###The mean {}: {}###'.format(metric, seg_metric[metric]/num_pcs))
def train(args, net, train_loader, val_loader, textio):
opt = optim.Adam(net.parameters(), lr=args.lr, weight_decay=1e-4)
scheduler = StepLR(opt, args.decay_epochs, gamma = args.decay_rate)
best_val_loss = np.inf
train_loss_ls = np.zeros((args.epochs))
val_loss_ls = np.zeros((args.epochs))
train_items_iter = {
'Loss': [], 'smoothnessLoss': [],'veloLoss': [], 'chamferLoss': []}
val_items_iter = copy.deepcopy(train_items_iter)
for epoch in range(args.epochs):
textio.cprint('==epoch: %d, learning rate: %f=='%(epoch, opt.param_groups[0]['lr']))
total_loss, loss_items = train_one_epoch(args, net, train_loader, opt, 'train')
train_loss_ls[epoch] = total_loss
for it in loss_items:
train_items_iter[it].extend([loss_items[it]])
textio.cprint('mean train loss: %f'%total_loss)
total_loss, loss_items = train_one_epoch(args, net, val_loader, opt, 'val')
val_loss_ls[epoch] = total_loss
for it in loss_items:
val_items_iter[it].extend([loss_items[it]])
textio.cprint('mean val loss: %f'%total_loss)
if best_val_loss >= total_loss:
best_val_loss = total_loss
textio.cprint('best val loss till now: %f'%total_loss)
if torch.cuda.device_count() > 1:
torch.save(net.module.state_dict(), 'checkpoints/%s/models/model.best.t7' % args.exp_name)
else:
torch.save(net.state_dict(), 'checkpoints/%s/models/model.best.t7' % args.exp_name)
scheduler.step()
plot_loss_epoch(train_items_iter, args, epoch)
plt.clf()
plt.plot(train_loss_ls[0:int(args.epochs)], 'b')
plt.plot(val_loss_ls[0:int(args.epochs)], 'r')
plt.legend(['train','val'])
plt.xlabel('epoch')
plt.ylabel('loss')
plt.savefig('checkpoints/%s/loss.png' % args.exp_name,dpi=500)
def main(io_args):
args = parse_args_from_yaml("configs.yaml")
args.eval = io_args.eval
args.vis = io_args.vis
args.dataset_path = io_args.dataset_path
args.exp_name = io_args.exp_name
args.model = io_args.model
args.dataset = io_args.dataset
# CUDA settings
torch.cuda.empty_cache()
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_device
# deterministic results
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# init checkpoint records
_init_(args)
textio = IOStream('checkpoints/' + args.exp_name + '/run.log')
textio.cprint(str(args))
# init dataset and dataloader
if args.dataset=='saicDataset':
if args.eval:
test_loader = DataLoader(saicDataset(args=args, textio = textio, root = args.dataset_path, partition='test'),
num_workers=args.num_workers,batch_size=1, shuffle=False, drop_last=False)
else:
train_loader = DataLoader(saicDataset(args=args, textio = textio, root = args.dataset_path, partition='train'),
num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, drop_last=True)
val_loader = DataLoader(saicDataset(args=args, textio = textio, root = args.dataset_path, partition='val'),
num_workers=args.num_workers,batch_size=args.val_batch_size, shuffle=False, drop_last=False)
if args.dataset == 'vodDataset':
if args.eval:
test_loader = DataLoader(vodDataset(args=args, textio = textio, root = args.dataset_path, partition='test'),
num_workers=args.num_workers,batch_size=1, shuffle=False, drop_last=False)
else:
train_loader = DataLoader(vodDataset(args=args, textio = textio, root = args.dataset_path, partition='train'),
num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, drop_last=True)
val_loader = DataLoader(vodDataset(args=args, textio = textio, root = args.dataset_path, partition='val'),
num_workers=args.num_workers,batch_size=args.val_batch_size, shuffle=False, drop_last=False)
# init the network (load or from scratch)
net = init_model(args)
if args.eval:
test(args, net, test_loader, textio)
else:
train(args, net, train_loader, val_loader, textio)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Radar Scene flow running')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--vis', action = 'store_true')
parser.add_argument('--dataset_path', type= str, default = 'demo_data/')
parser.add_argument('--exp_name', type = str, default = 'raflow')
parser.add_argument('--model', type = str, default = 'raflow')
parser.add_argument('--dataset', type = str, default = 'saicDataset')
args = parser.parse_args()
main(args)