-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathzero-shot_chid.py
236 lines (185 loc) · 8.62 KB
/
zero-shot_chid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sample Generate GPT2"""
import os
import torch
import time
import json
from tqdm import tqdm
from arguments import get_args
from utils import Timers
from data_utils.tokenization_gpt2 import GPT2Tokenizer
import mpu
import json
from tqdm import tqdm
from data.samplers import DistributedBatchSampler, RandomSampler
from utils import initialize_distributed, set_random_seed, setup_model_and_optimizer, yprint
class CHIDDataset(torch.utils.data.Dataset):
def __init__(self, args, data_path, split, tokenizer, ratio=1):
self.split = split
self.tokenizer = tokenizer
self.ratio = ratio
self.args = args
self.world_size = args.world_size
self.pad_id = tokenizer.encoder['<pad>']
self.eod_token = tokenizer.encoder['<eod>']
args.eod_token = tokenizer.encoder['<eod>']
with open(data_path, "r") as f:
data = json.load(f)
self.samples, self.sizes, self.truth_labels = self.process(data)
self.max_size = max(self.sizes)
def process(self, data):
contents = data["contents"]
sids = data["sids"]
truth_labels = data["labels"]
cids = data["cids"]
sizes = []
samples = []
for content, sid, cid in zip(tqdm(contents[:int(self.ratio * len(contents))], desc="Processing", disable=(torch.distributed.get_rank() != 0)), sids, cids):
input_ids = content
input_ids = input_ids + [self.eod_token]
length = len(input_ids) - 1
sizes.append(length)
samples.append({
"sid": sid,
"cid": cid,
"input_ids": input_ids[:-1],
"loss_mask": [1.0] * length,
"labels": input_ids[1:]
})
return samples, sizes, truth_labels
def __len__(self):
return len(self.sizes)
def __getitem__(self, idx):
return self.samples[idx], self.sizes[idx]
def collate(self, x):
bs = len(x)
samps = [s[0] for s in x]
sizes = [s[1] for s in x]
max_size = self.max_size
attn_mask = torch.tril(torch.ones((max_size, max_size))).unsqueeze(0)
position_ids = torch.arange(max_size, dtype=torch.long).unsqueeze(0).repeat(bs, 1)
if self.args.fp16:
attn_mask = attn_mask.half()
batch_sample = {
"input_ids": torch.ones(bs, max_size).long() * self.pad_id,
"attention_mask": attn_mask,
"position_ids": position_ids
}
no_model_sample = {
"sids": torch.zeros(bs).long(),
"cids": torch.zeros(bs).long(),
"loss_mask": torch.zeros(bs, max_size).float(),
"labels": torch.ones(bs, max_size).long() * self.pad_id,
}
for i, samp in enumerate(samps):
batch_sample["input_ids"][i, :len(samp["input_ids"])] = torch.tensor(samp["input_ids"])
no_model_sample["loss_mask"][i, :len(samp["loss_mask"])] = torch.tensor(samp["loss_mask"])
no_model_sample["labels"][i, :len(samp["labels"])] = torch.tensor(samp["labels"])
no_model_sample["sids"][i] = torch.tensor(samp["sid"])
no_model_sample["cids"][i] = torch.tensor(samp["cid"])
return batch_sample, no_model_sample
def load_data(args, data_type, tokenizer, ratio=1):
data_path = args.data_dir
# Data parallel arguments.
world_size = mpu.get_data_parallel_world_size()
rank = mpu.get_data_parallel_rank()
global_batch_size = args.batch_size * world_size
num_workers = args.num_workers
# Dataset
filename = os.path.join(data_path, data_type+'.json')
dataset = CHIDDataset(args, filename, data_type, tokenizer, ratio=ratio)
# Use a random sampler with distributed batch sampler.
if data_type == 'train':
sampler = RandomSampler(dataset)
else:
sampler = torch.utils.data.SequentialSampler(dataset)
batch_sampler = DistributedBatchSampler(sampler=sampler,
batch_size=global_batch_size,
drop_last=True,
rank=rank,
world_size=world_size)
# Torch dataloader.
return torch.utils.data.DataLoader(dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
pin_memory=True,
collate_fn=dataset.collate), dataset
def main():
"""Main training program."""
# Disable CuDNN.
torch.backends.cudnn.enabled = False
# Timer.
timers = Timers()
# Arguments.
args = get_args()
# Pytorch distributed.
initialize_distributed(args)
# Random seeds for reproducability.
set_random_seed(args.seed)
# get the tokenizer
tokenizer = GPT2Tokenizer(os.path.join(args.tokenizer_path, 'vocab.json'), os.path.join(args.tokenizer_path, 'chinese_vocab.model'))
# load data
test_dataloader, test_dataset = load_data(args, 'test', tokenizer, 1)
# Set an arbitrary positive integer since the optimizer and the scheduler will not be used when do eval.
args.train_iters = 1
# Model
model, _, _ = setup_model_and_optimizer(args)
device = torch.cuda.current_device()
# give a time stemp to the model
cur_time = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
results_dir = os.path.join(args.results_dir, "{}-{}".format(args.model_name, cur_time))
if torch.distributed.get_rank() == 0:
os.makedirs(results_dir, exist_ok=True)
model.eval()
all_sids = []
all_cids = []
all_losses = []
with torch.no_grad():
for batch, no_model_batch in tqdm(test_dataloader, desc="Evaluating", disable=(torch.distributed.get_rank() != 0)):
for k in batch:
batch[k] = batch[k].to(device)
for k in no_model_batch:
no_model_batch[k] = no_model_batch[k].to(device)
output = model(**batch)
losses = mpu.vocab_parallel_cross_entropy(output.contiguous().float(), no_model_batch["labels"])
loss_mask = no_model_batch["loss_mask"]
loss = torch.sum(losses * loss_mask, dim=-1) / loss_mask.sum(dim=-1)
loss_tensor_list = [torch.zeros_like(loss).to(device) for _ in range(mpu.get_data_parallel_world_size())]
torch.distributed.all_gather(loss_tensor_list, loss.data, group=mpu.get_data_parallel_group())
all_losses.extend(loss_tensor_list)
sids = no_model_batch["sids"]
sid_tensor_list = [torch.zeros_like(sids) for _ in range(mpu.get_data_parallel_world_size())]
torch.distributed.all_gather(sid_tensor_list, sids.data, group=mpu.get_data_parallel_group())
all_sids.extend(sid_tensor_list)
cids = no_model_batch["cids"]
cid_tensor_list = [torch.zeros_like(cids) for _ in range(mpu.get_data_parallel_world_size())]
torch.distributed.all_gather(cid_tensor_list, cids.data, group=mpu.get_data_parallel_group())
all_cids.extend(cid_tensor_list)
if torch.distributed.get_rank() == 0:
all_losses = torch.stack(all_losses).view(-1).cpu().detach().numpy()
all_sids = torch.stack(all_sids).view(-1).cpu().detach().numpy()
all_cids = torch.stack(all_cids).view(-1).cpu().detach().numpy()
truth_labels = test_dataset.truth_labels
preds = [[] for _ in truth_labels]
for sid, cid, loss in zip(all_sids, all_cids, all_losses):
preds[sid].append((cid, loss))
preds = [min(p, key=lambda x: x[1])[0] for p in preds if len(p) > 0]
yprint("Acc: {}".format(sum([int(p == l) for p, l in zip(preds, truth_labels)]) / len(truth_labels)))
with open(os.path.join(results_dir, "zero-shot_result.txt"), "w") as f:
f.write("Acc: {}\n".format(sum([int(p == l) for p, l in zip(preds, truth_labels)]) / len(truth_labels)))
torch.distributed.barrier()
if __name__ == "__main__":
main()