-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpretrain_t5.py
199 lines (164 loc) · 6.25 KB
/
pretrain_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pretrain T5"""
import torch
from megatron import get_args
from megatron import print_rank_0
from megatron import get_timers
from megatron import get_tokenizer
from megatron import mpu
from megatron.data.T5_dataset import build_train_valid_test_datasets
from megatron.model import T5ModelPipe, T5Model
from megatron.training import pretrain
from megatron.utils import get_masks_and_position_ids_for_t5
from megatron.utils import reduce_losses
from megatron.fp16 import fp32_to_fp16
def model_provider():
"""Build the model."""
args = get_args()
print_rank_0('building T5 model ...')
if args.pipe_parallel_size == 0 or args.pipe_parallel_size == 1:
model = T5Model(num_tokentypes=0, parallel_output=True)
else:
model = T5ModelPipe(num_tokentypes=0, parallel_output=True, topology=mpu.get_topology())
model._megatron_batch_fn = get_batch_pipe
model._input_grad = [True, False, True, False, False]
model._input_type = ['float', 'int', 'float', 'int', 'int']
model._input_pipe_partitioned = [True, False, True, False, False]
return model
def get_batch(data_iterator):
args = get_args()
tokenizer = get_tokenizer()
# Items and their type.
keys = [
"contexts",
"targets",
"labels",
"ctx_eod_mask",
]
datatype = torch.int64
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
# Broadcast data.
data_b = mpu.broadcast_data(keys, data, datatype)
# Unpack.
contexts = data_b['contexts'].long()
targets = data_b['targets'].long()
labels = data_b['labels'].long()
ctx_eod_mask = data_b['ctx_eod_mask'].long()
# Unpack.
enc_token_ids = contexts
dec_token_ids = targets
# Get the masks and postition ids.
enc_attn_mask, enc_pos_ids, dec_attn_mask, dec_pos_ids, cross_attn_mask, loss_mask = get_masks_and_position_ids_for_t5(
args,
tokenizer,
contexts,
targets,
labels,
ctx_eod_mask,
args.reset_position_ids,
args.reset_attention_mask)
if args.fp16:
# cast to fp16 because pipeline parallelism skips the FP16 wrapper.
return fp32_to_fp16((enc_token_ids, enc_pos_ids, enc_attn_mask,
dec_token_ids, dec_pos_ids, dec_attn_mask,
cross_attn_mask)), fp32_to_fp16((labels, loss_mask))
else:
return (enc_token_ids, enc_pos_ids, enc_attn_mask,
dec_token_ids, dec_pos_ids, dec_attn_mask,
cross_attn_mask), (labels, loss_mask)
def get_batch_pipe(data):
args = get_args()
tokenizer = get_tokenizer()
# Items and their type.
keys = [
"contexts",
"targets",
"labels",
"ctx_eod_mask",
]
datatype = torch.int64
# Broadcast data.
data_b = mpu.broadcast_data(keys, data, datatype)
# Unpack.
contexts = data_b['contexts'].long()
targets = data_b['targets'].long()
labels = data_b['labels'].long()
ctx_eod_mask = data_b['ctx_eod_mask'].long()
# Unpack.
enc_token_ids = contexts
dec_token_ids = targets
# Get the masks and postition ids.
enc_attn_mask, enc_pos_ids, dec_attn_mask, dec_pos_ids, cross_attn_mask, loss_mask = get_masks_and_position_ids_for_t5(
args,
tokenizer,
contexts,
targets,
labels,
ctx_eod_mask,
args.reset_position_ids,
args.reset_attention_mask)
if args.fp16:
# cast to fp16 because pipeline parallelism skips the FP16 wrapper.
return fp32_to_fp16((enc_token_ids, enc_pos_ids, enc_attn_mask,
dec_token_ids, dec_pos_ids, dec_attn_mask,
cross_attn_mask)), fp32_to_fp16((labels, loss_mask))
else:
return (enc_token_ids, enc_pos_ids, enc_attn_mask,
dec_token_ids, dec_pos_ids, dec_attn_mask,
cross_attn_mask), (labels, loss_mask)
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch generator').start()
(enc_token_ids, enc_pos_ids, enc_attn_mask,
dec_token_ids, dec_pos_ids, dec_attn_mask,
cross_attn_mask), (labels, loss_mask) = get_batch(data_iterator)
timers('batch generator').stop()
# Forward model.
losses = model(enc_token_ids, enc_pos_ids, enc_attn_mask,
dec_token_ids, dec_pos_ids, dec_attn_mask, cross_attn_mask,
labels=labels)
loss_mask = loss_mask.view(-1)
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Reduce loss for logging.
reduced_loss = reduce_losses([loss])
return loss, {'lm loss': reduced_loss[0]}
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
tokenizer = get_tokenizer()
print_rank_0('> building train, validation, and test datasets '
'for Enc-Dec ...')
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
tokenizer=tokenizer,
data_prefix=args.data_path,
data_impl=args.data_impl,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
enc_seq_length=args.enc_seq_length,
dec_seq_length=args.dec_seq_length,
seed=args.seed,
skip_warmup=(not args.mmap_warmup))
print_rank_0("> finished creating Enc-Dec datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
args_defaults={'tokenizer_type': 'T5Tokenizer'})