-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_heatmap_and_connections.py
184 lines (145 loc) · 6.85 KB
/
plot_heatmap_and_connections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Ariane Mueting and Bodo Bookhagen
"""
import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
from matplotlib.cm import ScalarMappable
import os
def plot_network(df, color_by = "dx_iqr", vmin = 0, vmax = 1):
if df.date0.dtype == "O":
df.date0 = pd.to_datetime(df.date0)
if df.date1.dtype == "O":
df.date1 = pd.to_datetime(df.date1)
df["dx_iqr"] = df.dx_p75-df.dx_p25
df["dy_iqr"] = df.dy_p75-df.dy_p25
df["dt"] = df.date1 - df.date0
conns = pd.concat([df.date0, df.date1]).value_counts().reset_index().rename(columns = {"index":"date", 0:"count"})
merge = df.merge(conns, left_on='date0', right_on='date')
merge = merge.merge(conns, left_on='date1', right_on='date')
agg = pd.DataFrame({"date": pd.concat([df.date0, df.date1]), "dx_iqr": pd.concat([df.dx_iqr, df.dx_iqr]), "dy_iqr": pd.concat([df.dy_iqr, df.dy_iqr])})
agg = agg.groupby("date").aggregate("median").reset_index()
merge = merge.merge(agg, left_on = "date0", right_on = "date", suffixes=("", "_agg_ref"))
merge = merge.merge(agg, left_on = "date1", right_on = "date", suffixes=("", "_agg_sec"))
fig, ax = plt.subplots(1,2, figsize = (12,5))
cmap = plt.get_cmap('viridis')
norm = Normalize(vmin = vmin, vmax = vmax)
for d0, d1, c0, c1, s in zip(merge.date0, merge.date1, merge.dx_iqr_agg_ref, merge.dx_iqr_agg_sec, merge["dx_iqr"]):
x_values = [d0, d1]
y_values = [c0, c1]
color = cmap(norm(s))
ax[0].plot(x_values, y_values, color=color)
ax[0].scatter(agg.date, agg.dx_iqr)
ax[0].set_xlabel("Date")
ax[0].set_ylabel("median dx IQR ")
for d0, d1, c0, c1, s in zip(merge.date0, merge.date1, merge.dy_iqr_agg_ref, merge.dy_iqr_agg_sec, merge["dy_iqr"]):
x_values = [d0, d1]
y_values = [c0, c1]
color = cmap(norm(s))
ax[1].plot(x_values, y_values, color=color)
ax[1].scatter(agg.date, agg.dy_iqr)
ax[1].set_xlabel("Date")
ax[1].set_ylabel("median dy IQR ")
ax[0].set_ylim(0,1.1)
ax[1].set_ylim(0,1.1)
ax[0].grid()
ax[1].grid()
sm = ScalarMappable(cmap=cmap, norm=norm)
plt.colorbar(sm, label = "dx_iqr", ax = ax[0])
plt.colorbar(sm, label = "dy_iqr", ax = ax[1])
plt.tight_layout()
# fig, ax = plt.subplots()
# cmap = plt.get_cmap('viridis')
# norm = Normalize(vmin = vmin, vmax = vmax)
# for d0, d1, c0, c1, s in zip(merge.date0, merge.date1, merge.count_x, merge.count_y, merge[color_by]):
# x_values = [d0, d1]
# y_values = [c0, c1]
# color = cmap(norm(s))
# ax.plot(x_values, y_values, color=color)
# ax.scatter(conns.date, conns["count"])
# sm = ScalarMappable(cmap=cmap, norm=norm)
# plt.colorbar(sm, label = color_by, ax = ax)
def plot_heatmap(df):
if df.date0.dtype == "O":
df.date0 = pd.to_datetime(df.date0)
if df.date1.dtype == "O":
df.date1 = pd.to_datetime(df.date1)
df = df.sort_values(by=['date0'])
df["dx_iqr"] = df.dx_p75-df.dx_p25
df["dy_iqr"] = df.dy_p75-df.dy_p25
df["dt"] = df.date1 - df.date0
# fig, ax = plt.subplots(1,2, figsize = (12,5))
# ax[0].scatter(df['dt'].dt.days, df.dx_iqr, s = 2)
# ax[0].set_ylim(0,1.5)
# ax[1].scatter(df['dt'].dt.days, df.dy_iqr, s = 2)
# ax[1].set_ylim(0,1.5)
groups = df.group.unique() #TODO: remove groups
for g in groups:
gdf = df.loc[df.group == g]
#heatmap
fig, ax = plt.subplots(1,2, figsize = (12,5))
for i, what in enumerate(["dx_iqr", "dy_iqr"]):
pivot_df = gdf.pivot_table(index='date1', columns='date0', values=what, aggfunc='mean')
hm_data = pivot_df.to_numpy()
im = ax[i].imshow(hm_data, cmap='viridis', aspect='auto', origin='lower', vmin = 0, vmax = 1.5)
plt.colorbar(im, label=what, ax = ax[i])
xlab = [datetime.strftime(i, "%d.%m.%Y") for i in list(pivot_df.columns)]
ylab = [datetime.strftime(i, "%d.%m.%Y") for i in list(pivot_df.index)]
ax[i].set_xticks(np.arange(len(xlab)), labels=xlab)
ax[i].set_yticks(np.arange(len(ylab)), labels=ylab)
ax[i].set_title(g)
# Rotate the tick labels and set their alignment.
plt.setp(ax[i].get_xticklabels(), rotation=90, ha="right",
rotation_mode="anchor")
plt.tight_layout()
def get_scene_id(fn):
#extract the scene id from a PS scene filename
#assumes the filename still begins with the scene ID (should be default when downloading data)
_, fn = os.path.split(fn)
#determine processing level of scenes
if "_1B_" in fn:
level = 1
elif "_3B_" in fn:
level = 3
else:
print("Could not determine processing level of the data. Make sure that either _1B_ or _3B_ is included in the filename of your scene.")
return
if fn.split("_").index(f"{level}B") == 4: #PSB.SD case
scene_id = "_".join(fn.split("_")[0:4])
elif fn.split("_").index(f"{level}B") == 3: #PS2 case
scene_id = "_".join(fn.split("_")[0:3])
else:
print("Couldn't guess the instrument type. Have you modifies filenames?")
return
return scene_id
def get_date(scene_id):
#strip the time from th PS scene id
return datetime.strptime(scene_id[0:8], "%Y%m%d")
for aoi in [3,4,5,6,7,9,10]:
df = pd.read_csv(f"/home/ariane/Documents/Project3/PlanetScope_Data/aoi{aoi}/all_scenes/matches_by_group_PS2.csv")
df2 = pd.read_csv(f"/home/ariane/Documents/Project3/PlanetScope_Data/aoi{aoi}/all_scenes/matches_by_group_PSB.SD.csv")
df = pd.concat([df, df2]).reset_index(drop = True)
df["id_ref"] = df.ref.apply(get_scene_id)
df["id_sec"] = df.sec.apply(get_scene_id)
df["date0"] = df.id_ref.apply(get_date)
df["date1"] = df.id_sec.apply(get_date)
conns = pd.concat([df.date0, df.date1]).value_counts().reset_index().rename(columns = {"index":"date", 0:"count"})
merge = df.merge(conns, left_on='date0', right_on='date')
merge = merge.merge(conns, left_on='date1', right_on='date')
fig, ax = plt.subplots(1,1, figsize = (8,5))
cmap = plt.get_cmap('viridis')
for d0, d1, c0, c1 in zip(merge.date0, merge.date1, merge.count_x, merge.count_y):
x_values = [d0, d1]
y_values = [c0, c1]
ax.plot(x_values, y_values, c = "royalblue")
ax.scatter(conns.date, conns["count"], c = "royalblue")
ax.set_ylim(0, max(conns["count"])+1)
ax.set_xlabel("Date")
ax.set_ylabel("Number of connections")
ax.set_title(f"aoi{aoi}")
plt.grid()
plt.savefig(f"/home/ariane/Documents/Project3/connections/connections_aoi{aoi}.png", dpi = 300)