-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
207 lines (159 loc) · 7.58 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import argparse
import copy
import logging
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from model.wide_resnet import WideResNet32
from model.resnet import ResNet18
from utils import evaluate_standard, evaluate_standard_random_norms
from utils import (set_norm_list, set_random_norm, set_random_norm_mixed, get_loaders)
import torchattacks
from tqdm import tqdm
logger = logging.getLogger(__name__)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--data_dir', default='./data/', type=str)
parser.add_argument('--dataset', default='cifar10', choices=['cifar10', 'cifar100'])
parser.add_argument('--network', default='ResNet18', type=str)
parser.add_argument('--worker', default=4, type=int)
parser.add_argument('--epsilon', default=8, type=int)
parser.add_argument('--pretrain', default=None, type=str, help='path to load the pretrained model')
parser.add_argument('--save_dir', default=None, type=str, help='path to save log')
parser.add_argument('--attack_type', default='pgd')
parser.add_argument('--tau', default=0.1, type=float, help='tau in cw inf')
parser.add_argument('--max_iterations', default=100, type=int, help='max iterations in cw attack')
parser.add_argument('--c', default=1e-4, type=float, help='c in torchattacks')
parser.add_argument('--steps', default=1000, type=int, help='steps in torchattacks')
parser.add_argument('--norm_type', default='gn_32', type=str,
help='type of normalization to use. E.g., bn, in, gn_(group num), gbn_(group num)')
# random setting
parser.add_argument('--random_norm_training', action='store_true',
help='enable random norm training')
parser.add_argument('--num_group_schedule', default=None, type=int, nargs='*',
help='group schedule for gn/gbn in random gn/gbn training')
parser.add_argument('--random_type', default='None', type=str,
help='type of normalizations to be included besides gn/gbn, e.g. bn/in/bn_in')
parser.add_argument('--gn_type', default='gn', type=str, choices=['gn', 'gnr', 'gbn', 'gbnr', 'gn_gbn', 'gn_gbnr',
'gnr_gbn', 'gnr_gbnr'], help='type of gn/gbn to use')
parser.add_argument('--mixed', action='store_true', help='if use different norm for different layers')
return parser.parse_args()
def evaluate_attack(model, test_loader, args, atk, atk_name, logger):
test_loss = 0
test_acc = 0
n = 0
model.eval()
test_loader = iter(test_loader)
bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
pbar = tqdm(range(len(test_loader)), file=sys.stdout, bar_format=bar_format, ncols=80)
for i in pbar:
X, y = test_loader.next()
X, y = X.cuda(), y.cuda()
# random select a path to attack
if args.random_norm_training:
if args.mixed:
set_random_norm_mixed(args, model)
else:
set_random_norm(args, model)
X_adv = atk(X, y) # advtorch
# random select a path to infer
if args.random_norm_training:
if args.mixed:
set_random_norm_mixed(args, model)
else:
set_random_norm(args, model)
with torch.no_grad():
output = model(X_adv)
loss = F.cross_entropy(output, y)
test_loss += loss.item() * y.size(0)
test_acc += (output.max(1)[1] == y).sum().item()
n += y.size(0)
pgd_acc = test_acc / n
logger.info(atk_name)
logger.info('adv: %.4f \t', pgd_acc)
def main():
args = get_args()
args.save_dir = os.path.join('logs', args.save_dir)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
logfile = os.path.join(args.save_dir, 'output.log')
if os.path.exists(logfile):
os.remove(logfile)
log_path = os.path.join(args.save_dir, 'output_test.log')
handlers = [logging.FileHandler(log_path, mode='a+'),
logging.StreamHandler()]
logging.basicConfig(
format='[%(asctime)s] - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.INFO,
handlers=handlers)
logger.info(args)
assert type(args.pretrain) == str and os.path.exists(args.pretrain)
if args.dataset == 'cifar10':
args.num_classes = 10
elif args.dataset == 'cifar100':
args.num_classes = 100
else:
print('Wrong dataset:', args.dataset)
exit()
logger.info('Dataset: %s', args.dataset)
train_loader, test_loader, dataset_normalization = get_loaders(args.data_dir, args.batch_size, dataset=args.dataset,
worker=args.worker, norm=False)
# setup network
if args.network == 'ResNet18':
net = ResNet18
elif args.network == 'WideResNet32':
net = WideResNet32
else:
print('Wrong network:', args.network)
if args.random_norm_training:
assert args.num_group_schedule is not None
norm_list = set_norm_list(args.num_group_schedule[0], args.num_group_schedule[1], args.random_type,
args.gn_type)
model = net(norm_list, num_classes=args.num_classes, normalize=dataset_normalization).cuda()
else:
model = net(args.norm_type, num_classes=args.num_classes, normalize=dataset_normalization).cuda()
norm_list = set_norm_list(args.num_group_schedule[0], args.num_group_schedule[1], args.random_type,
args.gn_type)
model = torch.nn.DataParallel(model)
print(model)
# load pretrained model
pretrained_model = torch.load(args.pretrain)
model.load_state_dict(pretrained_model, strict=False)
model.eval()
if args.random_norm_training:
logger.info('Evaluating with standard images with random norms...')
_, nature_acc = evaluate_standard_random_norms(test_loader, model, args, norm_list)
logger.info('Nature Acc: %.4f \t', nature_acc)
else:
logger.info('Evaluating with standard images...')
_, nature_acc = evaluate_standard(test_loader, model)
logger.info('Nature Acc: %.4f \t', nature_acc)
if args.attack_type == 'pgd':
atk = torchattacks.PGD(model, eps=8 / 255, alpha=2 / 255, steps=20, random_start=True)
evaluate_attack(model, test_loader, args, atk, 'pgd', logger)
elif args.attack_type == 'fgsm':
atk = torchattacks.FGSM(model, eps=8/255)
evaluate_attack(model, test_loader, args, atk, 'fgsm', logger)
elif args.attack_type == 'mifgsm':
atk = torchattacks.MIFGSM(model, eps=8 / 255, alpha=2 / 255, steps=5, decay=1.0)
evaluate_attack(model, test_loader, args, atk, 'mifgsm', logger)
elif args.attack_type == 'deepfool':
atk = torchattacks.DeepFool(model, steps=50, overshoot=0.02)
evaluate_attack(model, test_loader, args, atk, 'deepfool', logger)
elif args.attack_type == 'cwl2':
atk = torchattacks.CW(model, c=args.c, kappa=0, steps=args.steps, lr=0.01)
evaluate_attack(model, test_loader, args, atk, 'cwl2', logger)
elif args.attack_type == 'autoattack':
atk = torchattacks.AutoAttack(model, norm='Linf', eps=8/255, version='standard', n_classes=args.num_classes)
evaluate_attack(model, test_loader, args, atk, 'autoattack', logger)
else:
print('Wrong attack method:', args.attack_type)
logger.info('Testing done.')
if __name__ == "__main__":
main()