This repository has been archived by the owner on May 22, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtime_cracking.py
53 lines (46 loc) · 1.54 KB
/
time_cracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
# import matplotlib.pyplot as plt
# import numpy as np
import genPrime as prim
import rho_pollard as rho
import fermat as ferm
import miller_rabin as mil
from rsa import RSA
import time
def time_crack(func, max_prime):
era = prim.erathosthene(max_prime)
sucess = 0
failed = 0
time_array = []
prime_array = []
for i in range(1,len(era),6):
start_time = time.perf_counter()
r = RSA.generate(era[i-1],era[i])
n = r.n
cracked = func(n)
if(not cracked):
print("Couldn't crack p = " + str(era[i-1]) + " q = " +str(era[i]))
failed += 1
else:
time_used = round(time.perf_counter() - start_time,4)
prime_array.append(n)
time_array.append(time_used)
p,q = cracked
print("p = " + str(p) + " q = " + str(q) + " --- %s seconds ---" % time_used)
sucess += 1
print("Sucess rate: " + str(sucess) + "/" + str(failed))
print(time_array)
print(prime_array)
return time_array, prime_array
if __name__ == "__main__":
time_crack(rho.crack_primes,10000)
# time_crack(ferm.crack_primes,1000)
# p = mil.generate_prime(32)
# q = mil.generate_prime(32)
# print("p = " + str(p) + " q = " + str(q) )
# n = p*q
# start_time = time.perf_counter()
# cracked = ferm.crack_primes(n)
# time_used = round(time.perf_counter() - start_time,4)
# p,q = cracked
# print("p = " + str(p) + " q = " + str(q) + " --- %s seconds ---" % time_used)