-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDeletion.thy
271 lines (233 loc) · 13.1 KB
/
Deletion.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
theory Deletion
imports Morphism Pushout Gluing
begin
locale deletion =
g: injective_morphism L G g +
l: injective_morphism K L b'
for K G L g b' +
assumes
dang_src: \<open>e \<in> E\<^bsub>G\<^esub> - \<^bsub>g\<^esub>\<^sub>E ` (E\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>E ` E\<^bsub>K\<^esub>) \<Longrightarrow> s\<^bsub>G\<^esub> e \<notin> \<^bsub>g\<^esub>\<^sub>V ` (V\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>V ` V\<^bsub>K\<^esub>)\<close> and
dang_trg: \<open>e \<in> E\<^bsub>G\<^esub> - \<^bsub>g\<^esub>\<^sub>E ` (E\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>E ` E\<^bsub>K\<^esub>) \<Longrightarrow> t\<^bsub>G\<^esub> e \<notin> \<^bsub>g\<^esub>\<^sub>V ` (V\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>V ` V\<^bsub>K\<^esub>)\<close>
begin
abbreviation V where \<open>V \<equiv> V\<^bsub>G\<^esub> - \<^bsub>g\<^esub>\<^sub>V ` (V\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>V ` V\<^bsub>K\<^esub>)\<close>
abbreviation E where \<open>E \<equiv> E\<^bsub>G\<^esub> - \<^bsub>g\<^esub>\<^sub>E ` (E\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>E ` E\<^bsub>K\<^esub>)\<close>
abbreviation D where \<open>D \<equiv> G\<lparr>nodes:=V,edges:=E\<rparr>\<close>
sublocale d: graph D
proof
show \<open>finite V\<^bsub>D\<^esub>\<close>
by (simp add:g.H.finite_nodes)
next
show \<open>finite E\<^bsub>D\<^esub>\<close>
by (simp add:g.H.finite_edges)
next
show \<open>s\<^bsub>D\<^esub> e \<in> V\<^bsub>D\<^esub>\<close> if \<open>e \<in> E\<^bsub>D\<^esub>\<close> for e
using that
by (simp add: g.H.source_integrity dang_src[of e])
next
show \<open>t\<^bsub>D\<^esub> e \<in> V\<^bsub>D\<^esub>\<close> if \<open>e \<in> E\<^bsub>D\<^esub>\<close> for e
using that
by (simp add: g.H.target_integrity dang_trg[of e])
qed
abbreviation d :: "('g, 'e, 'h, 'f) pre_morph" where
\<open>d \<equiv> g \<circ>\<^sub>\<rightarrow> b'\<close>
lemma k_inj_in_d_edge:
assumes \<open>e \<in> E\<^bsub>K\<^esub>\<close>
shows \<open>\<^bsub>d\<^esub>\<^sub>E e \<in> E\<^bsub>D\<^esub>\<close>
using g.morph_edge_range l.morph_edge_range g.inj_edges
by (fastforce simp add: morph_comp_def assms dest: inj_onD)
lemma k_inj_in_d_node:
assumes \<open>v \<in> V\<^bsub>K\<^esub>\<close>
shows \<open>\<^bsub>d\<^esub>\<^sub>V v \<in> V\<^bsub>D\<^esub>\<close>
using g.morph_node_range l.morph_node_range g.inj_nodes
by (fastforce simp add: morph_comp_def assms dest: inj_onD)
interpretation inj_d: injective_morphism K D d
proof
show \<open>\<^bsub>d\<^esub>\<^sub>E e \<in> E\<^bsub>D\<^esub>\<close> if \<open>e \<in> E\<^bsub>K\<^esub>\<close> for e
using that k_inj_in_d_edge by blast
next
show \<open>\<^bsub>d\<^esub>\<^sub>V v \<in> V\<^bsub>D\<^esub>\<close> if \<open>v \<in> V\<^bsub>K\<^esub>\<close> for v
using that k_inj_in_d_node by blast
next
show \<open>\<^bsub>d\<^esub>\<^sub>V (s\<^bsub>K\<^esub> e) = s\<^bsub>D\<^esub> (\<^bsub>d\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>K\<^esub>\<close> for e
using that wf_morph_comp[of K L b' G g]
by (simp add: g.morphism_axioms l.morphism_axioms morphism.source_preserve)
next
show \<open>\<^bsub>d\<^esub>\<^sub>V (t\<^bsub>K\<^esub> e) = t\<^bsub>D\<^esub> (\<^bsub>d\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>K\<^esub>\<close> for e
using that wf_morph_comp[of K L b' G g]
by (simp add: g.morphism_axioms l.morphism_axioms morphism.target_preserve)
next
show \<open>l\<^bsub>K\<^esub> v = l\<^bsub>D\<^esub> (\<^bsub>d\<^esub>\<^sub>V v)\<close> if \<open>v \<in> V\<^bsub>K\<^esub>\<close> for v
using that wf_morph_comp[of K L b' G g]
by (simp add: g.morphism_axioms l.morphism_axioms morphism.label_preserve)
next
show \<open>m\<^bsub>K\<^esub> e = m\<^bsub>D\<^esub> (\<^bsub>d\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>K\<^esub>\<close> for e
using that wf_morph_comp[of K L b' G g]
by (simp add: g.morphism_axioms l.morphism_axioms morphism.mark_preserve)
next
show \<open>inj_on \<^bsub>d\<^esub>\<^sub>V V\<^bsub>K\<^esub>\<close>
using inj_comp_inj g.injective_morphism_axioms injective_morphism.inj_nodes l.injective_morphism_axioms morph_comp_def
by blast
next
show \<open>inj_on \<^bsub>d\<^esub>\<^sub>E E\<^bsub>K\<^esub>\<close>
using inj_comp_inj g.injective_morphism_axioms injective_morphism.inj_edges l.injective_morphism_axioms morph_comp_def
by blast
qed
abbreviation c' :: "('e, 'e, 'f, 'f) pre_morph" where \<open>c' \<equiv> idM\<close>
interpretation inj_d: injective_morphism D G c'
proof
show \<open>\<^bsub>c'\<^esub>\<^sub>E e \<in> E\<^bsub>G\<^esub>\<close> if \<open>e \<in> E\<^bsub>D\<^esub>\<close> for e
using that by simp
next
show \<open>\<^bsub>c'\<^esub>\<^sub>V v \<in> V\<^bsub>G\<^esub>\<close> if \<open>v \<in> V\<^bsub>D\<^esub>\<close> for v
using that by simp
next
show \<open>\<^bsub>c'\<^esub>\<^sub>V (s\<^bsub>D\<^esub> e) = s\<^bsub>G\<^esub> (\<^bsub>c'\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>D\<^esub>\<close> for e
using that by simp
next
show \<open>\<^bsub>c'\<^esub>\<^sub>V (t\<^bsub>D\<^esub> e) = t\<^bsub>G\<^esub> (\<^bsub>c'\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>D\<^esub>\<close> for e
using that by simp
next
show \<open>l\<^bsub>D\<^esub> v = l\<^bsub>G\<^esub> (\<^bsub>c'\<^esub>\<^sub>V v)\<close> if \<open>v \<in> V\<^bsub>D\<^esub>\<close> for v
using that by simp
next
show \<open>m\<^bsub>D\<^esub> e = m\<^bsub>G\<^esub> (\<^bsub>c'\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>D\<^esub>\<close> for e
using that by simp
next
show \<open>inj_on \<^bsub>c'\<^esub>\<^sub>V V\<^bsub>D\<^esub>\<close>
by simp
next
show \<open>inj_on \<^bsub>c'\<^esub>\<^sub>E E\<^bsub>D\<^esub>\<close>
by simp
qed
lemma xxx[simp]:
assumes \<open>e \<in> X\<close>
shows \<open>inv_into X id e = id e\<close>
by (metis assms id_apply inj_on_id inv_into_f_f)
lemma xxx2[simp]:
assumes \<open>e \<in> E\<^bsub>X\<^esub>\<close>
shows \<open>inv_into E\<^bsub>X\<^esub> id e = id e\<close>
by (metis assms id_apply inj_on_id inv_into_f_f)
lemma xx11:
shows \<open>E\<^bsub>D\<^esub> \<subseteq> E\<^bsub>G\<^esub>\<close> and \<open>V\<^bsub>D\<^esub> \<subseteq> V\<^bsub>G\<^esub>\<close>
by simp_all
lemma xx3:\<open>E \<subseteq> E\<^bsub>G\<^esub>\<close>
by blast
lemma xx5:
assumes \<open>\<^bsub>g\<^esub>\<^sub>V v \<in> V\<^bsub>G\<^esub>\<close> and \<open>v \<in> V\<^bsub>L\<^esub>\<close>
shows \<open>\<^bsub>g\<^esub>\<^sub>V v \<notin> \<^bsub>g\<^esub>\<^sub>V ` (V\<^bsub>L\<^esub> - \<^bsub>l\<^esub>\<^sub>V ` V\<^bsub>K\<^esub>) \<longleftrightarrow> v \<in> \<^bsub>l\<^esub>\<^sub>V ` V\<^bsub>K\<^esub>\<close>
using assms(2) g.inj_nodes inj_onD by fastforce
lemma xxx8:
assumes \<open>x \<in> V\<^bsub>L\<^esub>\<close>
shows \<open>inv_into V\<^bsub>L\<^esub> \<^bsub>g\<^esub>\<^sub>V (\<^bsub>g\<^esub>\<^sub>V x) = x\<close>
by (simp add: assms g.inj_nodes)
lemma xxx8':
assumes \<open>x \<in> E\<^bsub>L\<^esub>\<close>
shows \<open>inv_into E\<^bsub>L\<^esub> \<^bsub>g\<^esub>\<^sub>E (\<^bsub>g\<^esub>\<^sub>E x) = x\<close>
by (simp add: assms g.inj_edges)
lemma case_sum_id_into_disj_union[simp]:
shows \<open>case_sum id f ` (Inl ` Y \<union> Inr ` R) = Y \<union> f ` (R)\<close>
by force
sublocale po: pushout_diagram K L D G b' d g c'
proof -
interpret gl: gluing K D L d b'
..
define u where
\<open>u \<equiv> \<lparr> node_map = case_sum id \<^bsub>g\<^esub>\<^sub>V
, edge_map = case_sum id \<^bsub>g\<^esub>\<^sub>E\<rparr>\<close>
interpret u: bijective_morphism gl.H G u
proof
show \<open>\<^bsub>u\<^esub>\<^sub>E e \<in> E\<^bsub>G\<^esub>\<close> if \<open>e \<in> E\<^bsub>gl.H\<^esub>\<close> for e
using that g.morph_edge_range
by (auto simp add: u_def gl.H_def)
next
show \<open>\<^bsub>u\<^esub>\<^sub>V v \<in> V\<^bsub>G\<^esub>\<close> if \<open>v \<in> V\<^bsub>gl.H\<^esub>\<close> for v
using that g.morph_node_range
by (auto simp add: u_def gl.H_def)
next
show \<open>\<^bsub>u\<^esub>\<^sub>V (s\<^bsub>gl.H\<^esub> e) = s\<^bsub>G\<^esub> (\<^bsub>u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>gl.H\<^esub>\<close> for e
proof (cases e)
case (Inl a)
then show ?thesis
by (simp add: u_def gl.H_def)
next
case (Inr b)
then show ?thesis
using that l.inj_nodes g.source_preserve
by (auto simp add: u_def gl.H_def) (metis comp_apply morph_comp_def pre_morph.select_convs(1))
qed
next
show \<open>\<^bsub>u\<^esub>\<^sub>V (t\<^bsub>gl.H\<^esub> e) = t\<^bsub>G\<^esub> (\<^bsub>u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>gl.H\<^esub>\<close> for e
proof (cases e)
case (Inl a)
then show ?thesis
by (simp add: u_def gl.H_def)
next
case (Inr b)
then show ?thesis
using that l.inj_nodes g.target_preserve
by (auto simp add: u_def gl.H_def) (metis comp_apply morph_comp_def pre_morph.select_convs(1))
qed
next
show \<open>l\<^bsub>gl.H\<^esub> v = l\<^bsub>G\<^esub> (\<^bsub>u\<^esub>\<^sub>V v)\<close> if \<open>v \<in> V\<^bsub>gl.H\<^esub>\<close> for v
using that g.label_preserve
by (auto simp add: u_def gl.H_def)
next
show \<open>m\<^bsub>gl.H\<^esub> e = m\<^bsub>G\<^esub> (\<^bsub>u\<^esub>\<^sub>E e)\<close> if \<open>e \<in> E\<^bsub>gl.H\<^esub>\<close> for e
using that g.mark_preserve
by (auto simp add: u_def gl.H_def)
next
show \<open>bij_betw \<^bsub>u\<^esub>\<^sub>V V\<^bsub>gl.H\<^esub> V\<^bsub>G\<^esub>\<close>
proof -
have \<open>V\<^bsub>D\<^esub> \<inter> \<^bsub>g\<^esub>\<^sub>V ` (V\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>V ` V\<^bsub>K\<^esub>) = {}\<close>
using g.inj_nodes
by fastforce
moreover
have \<open>V\<^bsub>D\<^esub> \<union> \<^bsub>g\<^esub>\<^sub>V ` (V\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>V ` V\<^bsub>K\<^esub>) = V\<^bsub>G\<^esub>\<close>
using g.inj_nodes g.morph_node_range
by fastforce
ultimately show ?thesis
using g.inj_nodes
by (force simp add: u_def inj_on_def bij_betw_def gl.H_def)
qed
next
show \<open>bij_betw \<^bsub>u\<^esub>\<^sub>E E\<^bsub>gl.H\<^esub> E\<^bsub>G\<^esub>\<close>
proof -
have \<open>E\<^bsub>D\<^esub> \<inter> \<^bsub>g\<^esub>\<^sub>E ` (E\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>E ` E\<^bsub>K\<^esub>) = {}\<close>
using g.inj_edges
by fastforce
moreover
have \<open>E\<^bsub>D\<^esub> \<union> \<^bsub>g\<^esub>\<^sub>E ` (E\<^bsub>L\<^esub> - \<^bsub>b'\<^esub>\<^sub>E ` E\<^bsub>K\<^esub>) = E\<^bsub>G\<^esub>\<close>
using g.inj_edges g.morph_edge_range
by fastforce
ultimately show ?thesis
using g.inj_edges
by (force simp add: u_def inj_on_def bij_betw_def gl.H_def)
qed
qed
have \<open>\<forall>v\<in>V\<^bsub>L\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.h\<^esub>\<^sub>V v = \<^bsub>g\<^esub>\<^sub>V v\<close> \<open>\<forall>e\<in>E\<^bsub>L\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.h\<^esub>\<^sub>E e = \<^bsub>g\<^esub>\<^sub>E e\<close>
and \<open>\<forall>v\<in>V\<^bsub>D\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.c\<^esub>\<^sub>V v = \<^bsub>c'\<^esub>\<^sub>V v\<close> \<open>\<forall>e\<in>E\<^bsub>D\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.c\<^esub>\<^sub>E e = \<^bsub>c'\<^esub>\<^sub>E e\<close>
proof -
show \<open>\<forall>v\<in>V\<^bsub>L\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.h\<^esub>\<^sub>V v = \<^bsub>g\<^esub>\<^sub>V v\<close>
using l.inj_nodes gl.h_def
by (auto simp add: morph_comp_def u_def l.inj_nodes)
next
show \<open>\<forall>e\<in>E\<^bsub>L\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.h\<^esub>\<^sub>E e = \<^bsub>g\<^esub>\<^sub>E e\<close>
using gl.h_def
by (auto simp add: morph_comp_def u_def l.inj_edges)
next
show \<open>\<forall>v\<in>V\<^bsub>D\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.c\<^esub>\<^sub>V v = \<^bsub>c'\<^esub>\<^sub>V v\<close>
by (simp add: u_def gl.c_def morph_comp_def)
next
show \<open>\<forall>e\<in>E\<^bsub>D\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.c\<^esub>\<^sub>E e = \<^bsub>c'\<^esub>\<^sub>E e\<close>
by (simp add: u_def gl.c_def morph_comp_def)
qed
show \<open>pushout_diagram K L D G b' d g c'\<close>
using
u.bijective_morphism_axioms
gl.po.uniqueness_po[OF g.H.graph_axioms g.morphism_axioms inj_d.morphism_axioms]
\<open>\<forall>e\<in>E\<^bsub>D\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.c\<^esub>\<^sub>E e = \<^bsub>c'\<^esub>\<^sub>E e\<close> \<open>\<forall>e\<in>E\<^bsub>L\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.h\<^esub>\<^sub>E e = \<^bsub>g\<^esub>\<^sub>E e\<close>
\<open>\<forall>v\<in>V\<^bsub>D\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.c\<^esub>\<^sub>V v = \<^bsub>c'\<^esub>\<^sub>V v\<close> \<open>\<forall>v\<in>V\<^bsub>L\<^esub>. \<^bsub>u \<circ>\<^sub>\<rightarrow> gl.h\<^esub>\<^sub>V v = \<^bsub>g\<^esub>\<^sub>V v\<close>
by blast
qed
end
end