-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_test.py
63 lines (56 loc) · 2.78 KB
/
run_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pandas as pd
from pprint import pprint
from problem import ProblemHandler
from heuristic import HeuristicMaxClique
# from branch_and_bound import BranchAndBound
from branch_and_cut import BranchAndCut
from benchmarks import EASY, MEDIUM, HARD, REST
from utils import *
def run_test(benchmark: str, abs_tol: float = 1e-4, time_limit: int = None):
print(f'{benchmark} started...')
graph = read_graph_file(benchmark, verbose=False)
problem_handler = ProblemHandler(graph=graph)
problem_handler.design_problem()
print('Problem constructed!')
heuristic = HeuristicMaxClique(graph)
heuristic_clique = heuristic.run()
heuristic_clique_size = int(sum(heuristic_clique))
print(f'Found heuristic solution! ({heuristic_clique_size})')
bnb_algorithm = BranchAndCut(problem=problem_handler,
initial_solution=heuristic_clique, time_limit=time_limit,
initial_obj_value=heuristic_clique_size, abs_tol=abs_tol)
exec_time = bnb_algorithm.timed_run()
_minutes, _seconds = divmod(exec_time, 60)
clique_nodes = to_node_indexes(bnb_algorithm.best_solution)
_result = dict(benchmark=benchmark.split('/')[-1],
heuristic_clique_size=heuristic_clique_size,
bnb_clique_size=bnb_algorithm.best_obj_value,
is_bnb_solution_clique=BranchAndCut.is_clique(graph, clique_nodes)[0],
bnb_exec_time=f'{_minutes:.0f}min {_seconds:.1f}sec',
bnb_exec_time_seconds=exec_time,
bnb_call_count=bnb_algorithm.call_counter,
bnb_max_recursion_depth=None,
)
return _result
def run_tests(benchmarks: list, time_limit: int = None, abs_tol: float = 1e-4,
out_folder: str = 'results/', suffix: str = ''):
results = []
for filepath in benchmarks:
try:
result_dct = run_test(filepath, abs_tol=abs_tol, time_limit=time_limit)
result_dct['true_clique_size'] = benchmarks[filepath]
pprint(result_dct)
results.append(result_dct)
except TimeoutException as timeout:
print(filepath, timeout.msg)
results.append(dict(benchmark=filepath.split('/')[-1],
bnb_exec_time=timeout.msg,
bnb_clique_size=timeout.best_clique_size,
true_clique_size=benchmarks[filepath]))
result_df = pd.DataFrame(results)
result_df.to_csv(out_folder + f'results_{suffix}.csv')
result_df.to_excel(out_folder + f'results_{suffix}.xlsx')
return
if __name__ == '__main__':
benchmarks = dict(**EASY, **MEDIUM)
run_tests(benchmarks=benchmarks, time_limit=3600, suffix='_improvments_cut', abs_tol=1e-4)