-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1195C_Basketball_Exercise.cpp
244 lines (223 loc) · 6.22 KB
/
1195C_Basketball_Exercise.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Vidur Goel
//Codeforcees Handle: Vidurcodviz
#include<bits/stdc++.h>
using namespace std;
using namespace chrono;
void solve();
void solvg();
void solve_mul();
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double lld;
typedef vector<ll> vl;
typedef pair<ll,ll> pll;
typedef vector<pll> vpll;
typedef vector<vl> vvl;
#define make_it_fast() ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
#define all(x) (x).begin(), (x).end()
#define sor(x) sort(all(x))
#define sorr(x) sort(x.rbegin(),x.rend()) // this is in order to do sorting in descending order
#define lb lower_bound
#define ub upper_bound
#define eb emplace_back
#define pb push_back
#define ppb pop_back
#define mp make_pair
#define ff first
#define ss second
#define MOD 1000000007
#define MOD1 998244353
#define PI 3.141592653589793238462
#define mset multiset<ll,greater<ll>> // it contains multiple instances of the same value in descending order
#define rep(i,a,b) for(ll i=a;i<b;i++)
#define nn endl
#define setbits(n) __builtin_popcount(n)
vl seive(1000009,-1);
string yup="YES";
string nope="NO";
void rev(vl &arr,ll n){rep(i,0,n){cin>>arr[i];}return;}
void prv(vl arr){rep(i,0,arr.size()){cout<<arr[i]<<" ";}cout<<nn;return;}
bool prime(ll n){rep(i,2,(ll)floor(sqrtl(n))+1){if(n%i==0){return false;}}return true;}
// if seive[i]==-1 it means it is prime else composite and seive[i] will give
// the lowest factor>1 that divides l+i actually.
void seiv(){seive[0]=0;seive[1]=1;for(ll i=2;i*i<=1000008;i++){if(seive[i]==-1){seive[i]=i;for(ll j=i*i;j<=1000008;j=j+i){if(seive[j]==-1){seive[j]=i;}}}}}
ll gcd(ll a,ll b){a=abs(a);b=abs(b);ll k=1;while(a%2==0 && b%2==0){k=2*k;a=a/2;b=b/2;}while(a%2==0){a=a/2;}while(b%2==0){b=b/2;}while(b!=0){a=a%b;swap(a,b);}return k*a;}
ll gcd(ll a,ll b,ll &x,ll &y){a=abs(a);b=abs(b);if(b == 0){x = 1;y = 0;return a;}ll x1,y1;ll d = gcd(b, a % b, x1, y1);x = y1;y = x1 - y1 * (a / b);return d;}
ll lcm(ll a,ll b){a=abs(a);b=abs(b);return (a/gcd(a, b))*b;}
ll binpow(ll a,ll n){ll res=1;while(n!=0){if(n%2==0){a=a*a;n=n/2;}else{res=res*a;n=n-1;}}return res;}
ll binpowmod(ll a,ll n,ll m){ll res=1;while(n!=0){if(n%2==0){a=a*a%m;n=n/2;}else{res=res*a%m;n=n-1;}}return res;}
ll add_mod(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a + b) % m) + m) % m;}
ll mul_mod(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a * b) % m) + m) % m;}
ll sub_mod(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a - b) % m) + m) % m;}
struct dsu{
vl parent;
vl size;
dsu(ll n){
size.resize(n+1);
parent.resize(n+1);
rep(i,0,n+1){
make_set(i);
}
}
void make_set(ll v){
parent[v]=v;
size[v]=1;
}
ll find_set(ll v){
if(v==parent[v]){
return v;
}
else{
return parent[v]=find_set(parent[v]);
}
}
void union_set(ll a,ll b){
a=find_set(a);
b=find_set(b);
if(a==b){
return;
}
else{
if(size[a]>=size[b]){
parent[b]=a;
size[a] += size[b];
}
else{
parent[a]=b;
size[b] += size[a];
}
}
}
};
struct segtree{
ll n;
vl arr;
vl tree;
segtree(ll n){
ll k=1;
this->n = n;
while(k<n){
k=k*2;
}
k*=2;
tree.assign(k,0);
}
ll merge_opn(ll x, ll y){
return x+y;
}
void merge(ll node){
tree[node]=merge_opn(tree[2*node+1],tree[2*node+2]);
}
ll range_query(ll node, ll l, ll r, ll query_l, ll query_r){
if(r<query_l || l>query_r){
return 0;
}
if(l>=query_l && r<=query_r){
return tree[node];
}
ll mid = (l+r)/2;
ll left=range_query(2*node+1,l,mid,query_l,query_r);
ll right=range_query(2*node+2,mid+1,r,query_l,query_r);
return merge_opn(left,right);
}
ll range_query(ll query_l, ll query_r){
return range_query(0,0,n-1,query_l,query_r-1);
}
void point_update(ll node, ll l, ll r, ll idx, ll val){
if(r-l==0){
tree[node]=val;
return;
}
ll mid = (l+r)/2;
if(idx>mid){
point_update(2*node+2,mid+1,r,idx,val);
}
else{
point_update(2*node+1,l,mid,idx,val);
}
merge(node);
}
void point_update(ll idx, ll val){
point_update(0,0,n-1,idx,val);
}
};
bool mycompare(pll p1 ,pll p2){
if(p1.first<p2.first){return true;}
else if(p1.first==p2.first){return p1.second<p2.second;}
else{return false;}
}
void solve_mul(){
ll test;
cin>>test;
rep(i,0,test){
}
}
ll ans(vvl &dp,ll n,ll i,vl &arr,vl &brr,ll prev){
if(dp[prev][i]!=-1){
return dp[prev][i];
}
if(i==n-1){
if(prev==0){
return dp[prev][i]=max(arr[i],brr[i]);
}
else if(prev==1){
return dp[prev][i]=brr[i];
}
else{
return dp[prev][i]=arr[i];
}
}
else if(i==n-2){
if(prev==0){
return dp[prev][i]=max(arr[i]+brr[i+1],brr[i]+arr[i+1]);
}
else if(prev==1){
return dp[prev][i]=brr[i]+arr[i+1];
}
else{
return dp[prev][i]=arr[i]+brr[i+1];
}
}
else{
if(prev==0){
return dp[prev][i]=max(arr[i]+max(ans(dp,n,i+1,arr,brr,1),ans(dp,n,i+2,arr,brr,1)),brr[i]+max(ans(dp,n,i+1,arr,brr,2),ans(dp,n,i+2,arr,brr,2)));
}
else if(prev==1){
return dp[prev][i]=brr[i]+max(ans(dp,n,i+1,arr,brr,2),ans(dp,n,i+2,arr,brr,2));
}
else{
return dp[prev][i]=arr[i]+max(ans(dp,n,i+1,arr,brr,1),ans(dp,n,i+2,arr,brr,1));
}
}
}
void solve(){
string s;
ll n;
cin>>n;
vl arr(n,0);
rev(arr,n);
vl brr(n,0);
rev(brr,n);
vvl dp(3,vl(n+1,-1));
cout<<ans(dp,n,0,arr,brr,0)<<nn;
}
void solvg(){
ll n,m;
cin>>n>>m;
vl a;
vvl arr(n,a);
rep(i,0,m){
ll x,y;
cin>>x>>y;
arr[x-1].pb(y);
arr[y-1].pb(x);
}
}
signed main(){
make_it_fast();
//seiv();
//solve_mul();
solve();
//solvg();
return 0;
}