-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSyncNetDist.py
276 lines (178 loc) · 8.32 KB
/
SyncNetDist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/python
#-*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import sys, os, random, time, pdb, numpy, importlib
from dataLoader import loadWAV
from accuracy import accuracy
class LossScale(nn.Module):
def __init__(self, init_w=10.0, init_b=-5.0):
super(LossScale, self).__init__()
self.wI = nn.Parameter(torch.tensor(init_w))
self.bI = nn.Parameter(torch.tensor(init_b))
self.wC = nn.Parameter(torch.tensor(init_w))
self.bC = nn.Parameter(torch.tensor(init_b))
class SyncNet(nn.Module):
def __init__(self, model=None, maxFrames=200, learning_rate=0.0001, nOut=1024, temporal_stride=1, **kwargs):
super(SyncNet, self).__init__();
SyncNetModel = importlib.import_module(model).__getattribute__("SyncNetModel")
self.__S__ = SyncNetModel(nOut = nOut, stride=temporal_stride).cuda();
self.__L__ = LossScale().cuda();
self.__optimizer__ = torch.optim.SGD(self.parameters(), lr = learning_rate, momentum=0.9, weight_decay=1e-5);
self.__max_frames__ = maxFrames;
def sync_loss(self,out_v,out_a,criterion):
batch_size = out_a.size()[0]
time_size = out_a.size()[2]
label = torch.arange(time_size).cuda()
nloss = 0
prec1 = 0
for ii in range(0,batch_size):
ft_v = out_v[[ii],:,:].transpose(2,0)
ft_a = out_a[[ii],:,:].transpose(2,0)
output = F.cosine_similarity(ft_v.expand(-1,-1,time_size),ft_a.expand(-1,-1,time_size).transpose(0,2)) * self.__L__.wC + self.__L__.bC
p1, p5 = accuracy(output.detach().cpu(), label.detach().cpu(), topk=(1, 5))
nloss += criterion(output, label)
prec1 += p1
nloss = nloss / batch_size
prec1 = prec1 / batch_size
return nloss, prec1
def train_network(self,loader=None,evalmode=None, alpC=1.0, alpI=1.0):
print('Content loss %f Identity loss %f'%(alpC,alpI))
if evalmode:
self.eval();
else:
self.train();
# ==================== ====================
counter = 0;
index = 0;
loss = 0;
eer = 0;
top1_sy = 0
top1_id = 0
criterion = torch.nn.CrossEntropyLoss()
stepsize = loader.batch_size
label_id = torch.arange(stepsize).cuda()
for data in loader:
tstart = time.time()
self.zero_grad();
data_v, data_a = data
# ==================== FORWARD PASS ====================
if evalmode:
with torch.no_grad():
out_a, out_A = self.__S__.forward_aud(data_a.cuda());
out_v, out_V = self.__S__.forward_vid(data_v.cuda());
else:
out_a, out_A = self.__S__.forward_aud(data_a.cuda());
out_v, out_V = self.__S__.forward_vid(data_v.cuda());
time_size = out_V.size()[2]
ri = random.randint(0,time_size-1)
out_AA = torch.mean(out_A,2,keepdim=True);
out_VA = out_V[:,:,[ri]]
# sync loss and accuracy
nloss_sy, p1s = self.sync_loss(out_v, out_a, criterion)
# identity loss and accuracy
idoutput = F.cosine_similarity(out_VA.expand(-1,-1,stepsize),out_AA.expand(-1,-1,stepsize).transpose(0,2)) * self.__L__.wI + self.__L__.bI
nloss_id = criterion(idoutput, label_id)
p1i, p5i = accuracy(idoutput.detach().cpu(), label_id.detach().cpu(), topk=(1, 2))
# ==================== Divergence Loss ====================
nloss = alpC * nloss_sy + alpI * nloss_id
if not evalmode:
nloss.backward()
self.__optimizer__.step();
loss += nloss.detach().cpu();
top1_sy += p1s[0]
top1_id += p1i[0]
counter+=1;
telapsed = time.time() - tstart
sys.stdout.write("\rProc (%d/%d): %.3fHz "%(index, loader.nFiles, stepsize/telapsed));
sys.stdout.write("Ls %.3f SYT1 %2.3f%% "%(loss/counter, top1_sy/counter));
sys.stdout.write("IDT1 %2.3f%% "%(top1_id/counter));
# ==================== CALCULATE LOSSES ====================
sys.stdout.write("Q:(%d/%d)"%(loader.qsize(), loader.maxQueueSize));
sys.stdout.flush();
index += stepsize;
sys.stdout.write("\n");
return (loss/counter, top1_id/counter);
## ===== ===== ===== ===== ===== ===== ===== =====
## Evaluate from list
## ===== ===== ===== ===== ===== ===== ===== =====
def evaluateFromListSave(self, listfilename, print_interval=10, test_path='', num_eval=10):
self.eval();
lines = []
files = []
filedict = {}
feats = {}
tstart = time.time()
## Read all lines
with open(listfilename) as listfile:
while True:
line = listfile.readline();
if (not line):
break;
data = line.split();
files.append(data[1])
files.append(data[2])
lines.append(line)
setfiles = list(set(files))
setfiles.sort()
## Save all features to file
for idx, file in enumerate(setfiles):
inp1 = loadWAV(os.path.join(test_path,file), self.__max_frames__*4, evalmode=True, num_eval=num_eval).cuda()
out_a, out_A = self.__S__.forward_aud(inp1.cuda());
out_AA = torch.mean(out_A,2);
feats[file] = out_AA.detach().cpu()
telapsed = time.time() - tstart
if idx % print_interval == 0:
sys.stdout.write("\rReading %d: %.2f Hz, embed size %d"%(idx,idx/telapsed,out_AA.size()[1]));
print('')
all_scores = [];
all_labels = [];
tstart = time.time()
## Read files and compute all scores
for idx, line in enumerate(lines):
data = line.split();
ref_feat = feats[data[1]].cuda()
com_feat = feats[data[2]].cuda()
dist = F.cosine_similarity(ref_feat.unsqueeze(-1).expand(-1,-1,num_eval), com_feat.unsqueeze(-1).expand(-1,-1,num_eval).transpose(0,2)).detach().cpu().numpy();
score = numpy.mean(dist);
all_scores.append(score);
all_labels.append(int(data[0]));
if idx % print_interval == 0:
telapsed = time.time() - tstart
sys.stdout.write("\rComputing %d: %.2f Hz"%(idx,idx/telapsed));
sys.stdout.flush();
print('\n')
return (all_scores, all_labels);
## ===== ===== ===== ===== ===== ===== ===== =====
## Update learning rate
## ===== ===== ===== ===== ===== ===== ===== =====
def updateLearningRate(self, alpha):
learning_rate = []
for param_group in self.__optimizer__.param_groups:
param_group['lr'] = param_group['lr']*alpha
learning_rate.append(param_group['lr'])
return learning_rate;
## ===== ===== ===== ===== ===== ===== ===== =====
## Save parameters
## ===== ===== ===== ===== ===== ===== ===== =====
def saveParameters(self, path):
torch.save(self.state_dict(), path);
## ===== ===== ===== ===== ===== ===== ===== =====
## Load parameters
## ===== ===== ===== ===== ===== ===== ===== =====
def loadParameters(self, path):
self_state = self.state_dict();
loaded_state = torch.load(path);
for name, param in loaded_state.items():
origname = name;
if name not in self_state:
name = name.replace("module.", "");
if name not in self_state:
print("%s is not in the model."%origname);
continue;
if self_state[name].size() != loaded_state[origname].size():
print("Wrong parameter length: %s, model: %s, loaded: %s"%(origname, self_state[name].size(), loaded_state[origname].size()));
continue;
self_state[name].copy_(param);