-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_mfcc.py
256 lines (210 loc) · 10.1 KB
/
pytorch_mfcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/python
#-*- coding: utf-8 -*-
# This code is from https://github.com/skaws2003/pytorch-mfcc (MIT License)
import torch
import decimal
import numpy
from torch.autograd import Function
import math
def dct(x, norm=None):
"""
##This code fragment is from https://github.com/zh217/torch-dct/blob/master/torch_dct/_dct.py ##
Discrete Cosine Transform, Type II (a.k.a. the DCT)
For the meaning of the parameter `norm`, see:
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html
:param x: the input signal
:param norm: the normalization, None or 'ortho'
:return: the DCT-II of the signal over the last dimension
"""
x_shape = x.shape
N = x_shape[-1]
x = x.contiguous().view(-1, N)
v = torch.cat([x[:, ::2], x[:, 1::2].flip([1])], dim=1)
Vc = torch.rfft(v, 1, onesided=False)
k = - torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * numpy.pi / (2 * N)
W_r = torch.cos(k)
W_i = torch.sin(k)
V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i
if norm == 'ortho':
V[:, 0] /= numpy.sqrt(N) * 2
V[:, 1:] /= numpy.sqrt(N / 2) * 2
V = 2 * V.view(*x_shape)
return V
def round_half_up(number):
return int(decimal.Decimal(number).quantize(decimal.Decimal('1'), rounding=decimal.ROUND_HALF_UP))
def hz2mel(hz):
"""
Convert a value in Hertz to Mels
:param hz: a value in Hz. This can also be a numpy array, conversion proceeds element-wise.
:returns: a value in Mels. If an array was passed in, an identical sized array is returned.
"""
return 2595 * numpy.log10(1+hz/700.)
def mel2hz(mel):
"""Convert a value in Mels to Hertz
:param mel: a value in Mels. This can also be a numpy array, conversion proceeds element-wise.
:returns: a value in Hertz. If an array was passed in, an identical sized array is returned.
"""
return 700*(10**(mel/2595.0)-1)
class MFCC(torch.nn.Module):
def __init__(self,samplerate=16000,winlen=0.025,winstep=0.01,numcep=13,nfilt=26,nfft=None,lowfreq=0,highfreq=None,preemph=0.97,ceplifter=22,appendEnergy=True):
super(MFCC,self).__init__()
self.samplerate = samplerate
self.winlen = winlen
self.winstep = winstep
self.numcep = numcep
self.nfilt = nfilt
self.nfft = nfft or self.calculate_nfft()
self.lowfreq = lowfreq
self.highfreq = highfreq or self.samplerate/2
self.preemph = preemph
self.ceplifter = ceplifter
self.appendEnergy = appendEnergy
self.winfunc=lambda x:numpy.ones((x,))
def calculate_nfft(self):
"""
Calculates the FFT size as a power of two greater than or equal to
the number of samples in a single window length.
Having an FFT less than the window length loses precision by dropping
many of the samples; a longer FFT than the window allows zero-padding
of the FFT buffer which is neutral in terms of frequency domain conversion.
:param samplerate: The sample rate of the signal we are working with, in Hz.
:param winlen: The length of the analysis window in seconds.
"""
window_length_samples = self.winlen * self.samplerate
nfft = 1
while nfft < window_length_samples:
nfft *= 2
return nfft
def forward(self,signals,lengths):
"""
Calculates MFCC.
:param signals: (torch.Tensor) batch of signals padded by 0.
:param lengths: (list) length of each elements in batch.
"""
self.tensor_type = signals.dtype
self.torch_device = signals.device
outs = []
for i,signal in enumerate(signals):
feat,energy = self.fbank(signal[:lengths[i]])
feat = torch.log(feat)
feat = dct(feat,norm='ortho')[:,:self.numcep]
feat = self.lifter(feat)
if self.appendEnergy:
feat[:,0] = torch.log(energy) # replace first cepstral coefficient with log of frame energy
outs.append(feat)
# Pad each element of outs list
max_len = max(outs,key=lambda x: x.shape[0]).shape[0]
mfcc_lengths = []
for i in range(len(outs)):
mfcc_lengths.append(len(outs[i]))
zeros = torch.zeros((max_len-outs[i].shape[0],outs[i].shape[1]),dtype=self.tensor_type).to(self.torch_device)
outs[i] = torch.cat([outs[i],zeros],dim=0)
outs = torch.stack(outs)
return outs,mfcc_lengths
def fbank(self,signal):
"""
Compute Mel-filterbank energy features from an audio signal.
:param signal: the audio signal from which to compute features. Should be an N*1 array
:returns: 2 values. The first is a numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. The second return value is the energy in each frame (total energy, unwindowed)
"""
signal = self.preemphasis(signal)
frames = self.framesig(signal)
pspec = self.powspec(frames)
energy = torch.sum(pspec,dim=1) # this stores the total energy in each frame
energy = energy + numpy.finfo(numpy.float32).eps # if energy is zero, we get problems with log
fb = self.get_filterbanks()
feat = torch.mm(pspec,fb) # compute the filterbank energies
feat = feat + numpy.finfo(numpy.float32).eps # if feat is zero, we get problems with log
return feat,energy
def preemphasis(self,signal,coeff=0.95):
"""
perform preemphasis on the input signal.
:param signal: The signal to filter.
:param coeff: The preemphasis coefficient. 0 is no filter, default is 0.95.
:returns: the filtered signal.
"""
a = signal[0].view(1)
b = signal[1:] - self.preemph * signal[:-1]
return torch.cat([a,b])
def framesig(self,signal):
"""
Frame a signal into overlapping frames.
:param sig: the audio signal to frame.
:returns: an array of frames. Size is NUMFRAMES by frame_len.
"""
frame_len = self.winlen * self.samplerate
frame_step = self.winstep * self.samplerate
slen = len(signal)
frame_len = int(round_half_up(frame_len))
frame_step = int(round_half_up(frame_step))
if slen <= frame_len:
numframes = 1
else:
numframes = 1 + int(math.ceil((1.0 * slen - frame_len) / frame_step))
padlen = int((numframes - 1) * frame_step + frame_len)
zeros = torch.zeros((padlen-slen)).to(self.torch_device)
padsignal = torch.cat((signal,zeros))
indices = numpy.tile(numpy.arange(0, frame_len), (numframes, 1)) + numpy.tile(numpy.arange(0, numframes * frame_step, frame_step), (frame_len, 1)).T
ind_shape = indices.shape
indices = numpy.array(indices, dtype=numpy.int32).reshape([-1])
frames = padsignal[indices].view(ind_shape)
win = numpy.tile(self.winfunc(frame_len), (numframes, 1))
win = torch.tensor(win,dtype=self.tensor_type).to(self.torch_device)
return frames * win
def powspec(self,frames):
"""
Compute the power spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).
:param frames: the array of frames. Each row is a frame.
:returns: If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the power spectrum of the corresponding frame.
"""
maged = self.magspec(frames)
return 1.0 / self.nfft * torch.mul(maged,maged)
def magspec(self,frames):
"""
Compute the magnitude spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).
:param frames: the array of frames. Each row is a frame.
:returns: If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the magnitude spectrum of the corresponding frame.
"""
if frames.shape[1] < self.nfft:
fshape = frames.shape
cat_zeros = torch.zeros([fshape[0],self.nfft-fshape[1]],dtype=self.tensor_type,device=self.torch_device)
frames = torch.cat([frames,cat_zeros],dim=1)
complex_spec = torch.rfft(frames,1)
abs_spec = torch.sqrt(torch.sum(torch.mul(complex_spec,complex_spec),dim=2)) # complex absolute
return abs_spec
def get_filterbanks(self):
"""
Compute a Mel-filterbank. The filters are stored in the rows, the columns correspond
to fft bins. The filters are returned as an array of size nfilt * (nfft/2 + 1)
:returns: A numpy array of size nfilt * (nfft/2 + 1) containing filterbank. Each row holds 1 filter.
"""
# compute points evenly spaced in mels
lowmel = hz2mel(self.lowfreq)
highmel = hz2mel(self.highfreq)
melpoints = numpy.linspace(lowmel,highmel,self.nfilt+2)
# our points are in Hz, but we use fft bins, so we have to convert
# from Hz to fft bin number
bin = numpy.floor((self.nfft+1)*mel2hz(melpoints)/self.samplerate)
fbank = numpy.zeros([self.nfilt,self.nfft//2+1])
for j in range(0,self.nfilt):
for i in range(int(bin[j]), int(bin[j+1])):
fbank[j,i] = (i - bin[j]) / (bin[j+1]-bin[j])
for i in range(int(bin[j+1]), int(bin[j+2])):
fbank[j,i] = (bin[j+2]-i) / (bin[j+2]-bin[j+1])
rtn = torch.tensor(fbank.T,dtype=self.tensor_type,device=self.torch_device)
return rtn
def lifter(self,cepstra):
"""
Apply a cepstral lifter the the matrix of cepstra. This has the effect of increasing the
magnitude of the high frequency DCT coeffs.
:param cepstra: the matrix of mel-cepstra, will be numframes * numcep in size.
feat,ceplifter
"""
if self.ceplifter > 0:
nframes,ncoeff = cepstra.shape
n = torch.arange(ncoeff).type(self.tensor_type).to(self.torch_device)
lift = 1 + (self.ceplifter/2.)*torch.sin(numpy.pi*n/self.ceplifter)
return lift*cepstra
else:
# values of L <= 0, do nothing
return cepstra