-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtool.py
368 lines (299 loc) · 10.5 KB
/
tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from itertools import product
import subprocess
import numpy as np
import matplotlib.pyplot as plt
import imageio
import random as rd
import time
import torch
import os
# import indicator
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
def adjust_learning_rate(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def LearningRateScheduler(loss_his, optimizer, lr_base):
loss_his = np.array(loss_his)
num_shock = np.sum((loss_his[:-1] - loss_his[1:]) < 0)
if num_shock > 0.40 * loss_his.shape[0] and lr_base > 1e-4:
lr_new = lr_base * 0.8
adjust_learning_rate(optimizer, lr_new)
else:
lr_new = lr_base
print('*** lr {} -> {} ***'.format(lr_base, lr_new))
print('num_shock', num_shock)
return lr_new
def SaveData(input, latent, label, dist=None, path='', name=''):
if type(input) == torch.Tensor:
input = input.detach().cpu().numpy()
if type(latent) == torch.Tensor:
latent = latent.detach().cpu().numpy()
if type(label) == torch.Tensor:
label = label.detach().cpu().numpy()
numEpoch = int(name.split('train_epoch')[1])
np.save(
path + name + 'latent.npy',
latent,
)
if numEpoch < 1:
np.save(
path + name + 'input.npy',
input.astype(np.float16),
)
np.save(
path + name + 'label.npy',
label.astype(np.float16),
)
if dist is not None:
np.save(
path + name + 'dist.npy',
dist.detach().cpu().numpy().astype(np.float16),
)
class GIFPloter():
def __init__(self, ):
self.path_list = []
def PlotOtherLayer(
self,
fig,
data,
label,
title='',
fig_position0=1,
fig_position1=1,
fig_position2=1,
s=0.1,
graph=None,
link=None,
# latent=None,
):
from sklearn.decomposition import PCA
color_list = []
for i in range(label.shape[0]):
color_list.append(int(label[i]))
if data.shape[1] > 3:
pca = PCA(n_components=2)
data_em = pca.fit_transform(data)
else:
data_em = data
# data_em = data_em-data_em.mean(axis=0)
if data_em.shape[1] == 3:
ax = fig.add_subplot(fig_position0,
fig_position1,
fig_position2,
projection='3d')
ax.scatter(data_em[:, 0],
data_em[:, 1],
data_em[:, 2],
c=color_list,
s=s,
marker='.',
cmap='rainbow',
)
if data_em.shape[1] == 2:
ax = fig.add_subplot(fig_position0, fig_position1, fig_position2)
if graph is not None:
self.PlotGraph(data, graph, link)
s = ax.scatter(data_em[:, 0],
data_em[:, 1],
c=label,
s=s,
)
plt.axis('equal')
# plt.colorbar(s)
if None:
list_i_n = len(set(label.tolist()))
# print(list_i_n)
legend1 = ax.legend(*s.legend_elements(num=list_i_n),
loc="upper left",
title="Ranking")
ax.add_artist(legend1)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.xticks([])
plt.yticks([])
# plt.title(title)
def AddNewFig(self,
latent,
label,
link=None,
graph=None,
his_loss=None,
title_='',
path='./',
dataset=None):
# fig = plt.figure(figsize=(20, 20))
fig = plt.figure(figsize=(9, 9))
if latent.shape[0] <= 1000:
s=3
elif latent.shape[0] <= 10000:
s = 1
else:
s = 0.1
# if latent.shape[1] <= 3:
self.PlotOtherLayer(fig,
latent,
label,
title=title_,
fig_position0=1,
fig_position1=1,
fig_position2=1,
graph=graph,
link=link,
s=s)
plt.tight_layout()
path_c = path + title_
self.path_list.append(path_c)
plt.savefig(path_c, dpi=200)
plt.close()
import joblib
joblib.dump(
[
latent,
label,
], path_c+'.gz')
def PlotGraph(self, latent, graph, link):
for i in range(graph.shape[0]):
for j in range(graph.shape[0]):
if graph[i, j] == True:
p1 = latent[i]
p2 = latent[j]
lik = link[i, j]
plt.plot([p1[0], p2[0]], [p1[1], p2[1]],
'gray',
lw=1 / lik)
if lik > link.min() * 1.01:
plt.text((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2,
str(lik)[:4],
fontsize=5)
def SaveGIF(self):
gif_images = []
for i, path_ in enumerate(self.path_list):
# print(path_)
gif_images.append(imageio.imread(path_))
# if i > 0 and i < len(self.path_list)-2:
# os.remove(path_)
imageio.mimsave(path_[:-4] + ".gif", gif_images, fps=5)
def SetSeed(seed):
"""function used to set a random seed
Arguments:
seed {int} -- seed number, will set to torch, random and numpy
"""
SEED = seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
rd.seed(SEED)
np.random.seed(SEED)
def GetPath(name=''):
rest = time.strftime("%Y%m%d%H%M%S_", time.localtime()) + \
os.popen('git rev-parse HEAD').read()
path = 'log/' + rest[:20] + name
if not os.path.exists(path):
os.makedirs(path)
return path + '/'
def SaveParam(path, param):
import json
paramDict = param
paramStr = json.dumps(paramDict, indent=4)
# paramStr = json.dumps(paramStr)
print(paramStr)
print(paramStr, file=open(path + '/param.txt', 'a'))
def ModelSaver(model, path, name):
torch.save(model.state_dict(), path + name + '.model')
def ModelLoader(model, path, name):
model.load_state_dict(torch.load(path + name + '.model'))
class AutoTrainer():
def __init__(self,
changeList,
paramName,
mainFunc,
deviceList=[4, 5, 6, 7],
poolNumber=4,
name='AutoTrainer',
waittime=1):
self.paramName = paramName
self.mainFunc = mainFunc
self.changeList = changeList
self.deviceList = deviceList
self.poolNumber = poolNumber
self.name = name
self.waittime = waittime
self.loopList = list(product(*tuple(changeList)))
# print(self.loopList)
# input()
def Run(self, ):
poolLeftNumber = self.poolNumber - 1
# gpunum = 0
for i, item in enumerate(self.loopList):
gpu_index = self.deviceList[i % len(self.deviceList)]
txt_proxy = "HTTPS_PROXY=http://10.18.155.13:7890"
txtDevice = " CUDA_VISIBLE_DEVICES={} ".format(gpu_index)
txtmain = 'python -u ' + self.mainFunc #+ ' --gpu_index {} '.format(gpu_index)
txtparam = ''
for j, param in enumerate(self.paramName):
txtparam += '--{} {} '.format(param, item[j])
txtname = '--name ' + self.name + '{}/{}'.format(i,len(self.loopList))
txt = ' '.join([txt_proxy, txtDevice, txtmain, txtparam, txtname])
txtp = ' '.join([txt_proxy, txtDevice, 'nohup', txtmain, txtparam, txtname])
txtp = ' '.join([txt_proxy, txtDevice, txtmain, txtparam, txtname])
# print(txtp+' &',)
print(txtp)
# input()
# os.system(txt)
if poolLeftNumber == 0:
print('continue left:', poolLeftNumber)
poolLeftNumber = self.poolNumber - 1
child = subprocess.Popen(txt, shell=True)
child.wait()
# subprocess.Popen()
else:
print('wait left:', poolLeftNumber)
child = subprocess.Popen(txt, shell=True)
# child.wait(2)
poolLeftNumber -= 1
time.sleep(self.waittime)
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
facecolor=facecolor, **kwargs)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)