-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbot.py
106 lines (92 loc) · 3.44 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import board as bd
import math
import copy
evalCalls = 0
def tuned_minimax(bstr, depth, alpha, beta, turn):
tempBoard = bd.Board(bstr)
originalBoard = bstr
optimalMove = ''
optD = ''
if tempBoard.endGame(turn):
print ('End game:' , optimalMove)
return tempBoard.utility(turn), optimalMove
if depth == 0:
return evaluate(bstr), optimalMove
if turn == 1:
maxEval = -99
for i in range(8):
for j in range(8):
for d in ['L', 'R', '-L', '-R']:
if tempBoard.moveAllowed(i, j, d, 1):
tempBoard.move(i, j, d, 1)
eval, _ = tuned_minimax(tempBoard.getString(), depth - 1, alpha, beta, -1)
if eval > maxEval:
maxEval = eval
optimalMove = tempBoard.getString()
tempBoard.editBoard(originalBoard)
alpha = max(alpha, eval)
if beta <= alpha:
break
return maxEval, optimalMove
else:
minEval = 99
for i in range(8):
for j in range(8):
for d in ['L', 'R', '-L', '-R']:
if tempBoard.moveAllowed(i, j, d, -1):
tempBoard.move(i, j, d, -1)
eval, _ = tuned_minimax(tempBoard.getString(), depth - 1, alpha, beta, 1)
if eval < minEval:
minEval = eval
optimalMove = tempBoard.getString()
optD = str(i) + ' ' + str(j) + ' ' + d
tempBoard.editBoard(originalBoard)
beta = min(beta, eval)
if beta <= alpha:
break
return minEval, optimalMove
def evaluate(string):
global evalCalls
evalCalls += 1
board = bd.Board(string)
if board.endGame(1):
return -1
if board.endGame(-1):
return 1
scoreW = 0.000
scoreB = 0.000
for i in range(8):
for j in range(8):
if board.board[i][j] > 0:
scoreW += board.board[i][j]
elif board.board[i][j] < 0:
scoreB += -board.board[i][j]
return round(2*((scoreW) / (scoreB + scoreW)) - 1, 5)
def botPlay(bstr = 'A', difficulty=5, turn=1, moves=0, constantDepth = False):
if constantDepth:
depth = difficulty
else:
num_pieces = 64 - bstr.count('0')
endGameWeigth = 0.025
moveWeigth = 0.1
depth = math.floor(difficulty / (endGameWeigth * num_pieces + 0.4) + max(moveWeigth*(moves - 50), 0))
print ('Depth (bp): ', depth)
"""
with open('dict6.txt', 'r') as file:
# Each line will have 3 values: str, mstr, eval
for line in file:
if bstr == line.split()[0]:
eval = line.split()[2]
print ('Evaluation: ', eval)
return line.split()[1]
"""
eval, mstr = tuned_minimax(bstr, depth, -math.inf, math.inf, turn)
# Add str, msr, eval to the file
# Turn evaluation to string
with open('dict6.txt', 'a') as file:
file.write(bstr + ',' + mstr + ',' + str(eval) + '\n')
print ('Evaluation: ', eval)
global evalCalls
print ('Number of calculated positions: ', evalCalls)
evalCalls = 0
return mstr