forked from stephenportillo/SDSS-VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrapperAE.py
70 lines (55 loc) · 2.34 KB
/
wrapperAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import autoencoderv3 as AE
import numpy as np
import matplotlib.pylab as plt
from sklearn.metrics import mean_squared_error
# In[2]:
"""parsing and configuration"""
def parse_args():
desc = "Tensorflow implementation of AE"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--n_z', type=int, default=2, help='Number neurons latent space', required=True)
parser.add_argument('--batch_size', type=int, default=64, help='The size of batch')
parser.add_argument('--epoch', type=int, default=20, help='The number of epochs to run')
parser.add_argument('--type_eval', type=str, default='training', choices=['training', 'validation'],
help='AE training or evaluate new data on previously trained AE')
parser.add_argument('--method', type=str, default='transform', choices=['transform', 'generate', 'reconstruct'],
help='Evaluate data on AE method')
return parser.parse_args()
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
if args.type_eval == 'training':
data = np.load('spec64k_normed.npz')
X = data['spec'].copy()
y = data['spec_class'].copy()
wavelength = data['lam']
X_train = X[data['trainidx']]
y_train = y[data['trainidx']]
X_test = X[data['valididx']]
y_test = y[data['valididx']]
modelAE = AE.Autoencoder(
learning_rate=1e-3,
batch_size=args.batch_size,
training_epochs=args.epoch,
display_step=5,
n_z=args.n_z,
n_hidden=[549, 110, 110, 549])
modelAE.train(X_train)
modelAE.save('LS_' + str(args.n_z))
elif args.type_eval == 'validation':
modelAE = AE.Autoencoder()
modelAE.restore('LS_' + str(args.n_z))
data = np.load('data2eval.npz')['arr_0']
if args.method == 'transform': #Transform data by mapping it into the latent space.
out = modelAE.transform(data)
elif args.method == 'generate': #Generate data by sampling from latent space
out = modelAE.generate(data)
elif args.method == 'reconstruct': #Use AE to reconstruct given data
out = modelAE.reconstruct(data)
np.savez('data2eval_result.npz', out)
if __name__ == '__main__':
main()