-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathindex.html
347 lines (302 loc) · 14.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG">
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG"/>
<meta property="og:description" content="SOCIAL MEDIA DESCRIPTION TAG TAG"/>
<meta property="og:url" content="URL OF THE WEBSITE"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200"/>
<meta property="og:image:height" content="630"/>
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG">
<meta name="twitter:description" content="TWITTER BANNER DESCRIPTION META TAG">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="KEYWORDS SHOULD BE PLACED HERE">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients</title>
<link rel="icon" type="image/x-icon" href="static/images/myico.ico">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficient</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
<a href="https://scholar.google.com/citations?hl=ko&user=kieVQZwAAAAJ" target="_blank">Woo Kyoung Han</a><sup>1,2</sup>,</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?hl=ko&user=37fSLtAAAAAJ" target="_blank">Sunghoon Im</a><sup>2</sup>,</span>
<span class="author-block">
<a href="https://sites.google.com/view/jaedeok" target="_blank">Jaedeok Kim</a><sup>3*</sup>,</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=aLYNnyoAAAAJ&hl=ko" target="_blank">Kyong Hwan Jin</a><sup>1*</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">Korea University<sup>1</sup>, DGIST<sup>2</sup>, NVIDIA<sup>3</sup> <br>CVPR 2024</span>
<span class="eql-cntrb"><small><br><sup>*</sup>Indicates Corresponding Authors</small></span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<!-- <span class="link-block">
<a href="static/pdfs/JDEC_camready.pdf"target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span> -->
<!-- Supplementary PDF link -->
<!-- <span class="link-block">
<a href="static/pdfs/JDEC_supplementary_material.pdf" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Supplementary</span>
</a>
</span>
-->
<!-- Github link -->
<span class="link-block">
<a href="https://github.com/WooKyoungHan/JDEC" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- ArXiv abstract Link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2404.05558" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Teaser video-->
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video poster="" id="tree" autoplay controls muted loop height="100%">
<!-- Your video here -->
<source src="static/videos/jdec_banner.mov"
type="video/mp4">
</video>
<h2 class="subtitle has-text-centered">
Instead of using a conventional JPEG decoder to refine the high-quality (HQ) image from the low-quality (LQ) image, our JDEC directly decodes the LQ spectrum by learning a continuous spectrum.
</h2>
</div>
</div>
</section>
<!-- End teaser video -->
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<img src="static/images/Fig_4_ver_final_main.jpg" alt="Poster Dataset Distillation (PoDD)" class="center-image" style="max-width: 100%; height: auto;"/>
<h2 class="subtitle has-text-centered">
<em><strong> Decoding a JPEG bitstream with the proposed JDEC.</strong></em> JDEC consists of an encoder with group spectra embedding, a decoder, and continuous cosine formulation. Inputs of JDEC are as follows: compressed spectra, quantization map. Note that our JDEC does not take images as an input. JDEC formulates latent features into a trainable continuous cosine coefficient as a function of block grid and forward to INR. Therefore, each block shares the estimated continuous cosine spectrum.
</h2>
</div>
</div>
</section>
<!-- Image carousel -->
<!-- <section class="hero is-small">
<div class="hero-body">
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<div class="item"> -->
<!-- Your image here -->
<!-- <img src="static/images/Fig_4_ver_final_main.jpg" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-centered">
Decoding a JPEG bitstream with the proposed JDEC. JDEC consists of an encoder with group spectra embedding, a decoder, and continuous cosine formulation. Inputs of JDEC are as follows: compressed spectra, quantization map. Note that our JDEC does not take images as an input. JDEC formulates latent features into a trainable continuous cosine coefficient as a function of block grid and forward to INR. Therefore, each block shares the estimated continuous cosine spectrum.
</h2>
</div> -->
<!-- <div class="item">
Your image here
<img src="static/images/carousel2.jpg" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-centered">
Second image description.
</h2>
</div>
<div class="item">
Your image here
<img src="static/images/carousel3.jpg" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-centered">
Third image description.
</h2>
</div>
<div class="item">
Your image here
<img src="static/images/carousel4.jpg" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-centered">
Fourth image description.
</h2>
</div> -->
<!-- </div>
</div>
</div>
</section> -->
<!-- End image carousel -->
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation. The JPEG algorithm significantly quantizes discrete cosine transform (DCT) spectra to achieve a high compression rate, inevitably resulting in quality degradation while encoding an image. We have designed a continuous cosine spectrum estimator to address the quality degradation issue that restores the distorted spectrum. By leveraging local DCT formulations, our network has the privilege to exploit dequantization and upsampling simultaneously. Our proposed model enables decoding compressed images directly across different quality factors using a single pre-trained model without relying on a conventional JPEG decoder. As a result, our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks. </p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<!-- Teaser video-->
<!-- <section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video poster="" id="tree" autoplay controls muted loop height="100%"> -->
<!-- Your video here -->
<!-- <source src="static/videos/jdec_banner.mp4"
type="video/mp4">
</video>
<h2 class="subtitle has-text-centered">
Instead of using a conventional JPEG decoder to refine the high-quality (HQ) image from the low-quality (LQ) image, our JDEC directly decodes the LQ spectrum by learning a continuous spectrum.
</h2>
</div>
</div>
</section> -->
<!-- End teaser video -->
<!-- Youtube video -->
<!-- <section class="hero is-small is-light">
<div class="hero-body">
<div class="container"> -->
<!-- Paper video. -->
<!-- <h2 class="title is-3">Video Presentation</h2>
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="publication-video"> -->
<!-- Youtube embed code here -->
<!-- <iframe src="https://www.youtube.com/embed/JkaxUblCGz0" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
</div>
</div>
</div>
</div>
</div>
</section> -->
<!-- End youtube video -->
<!-- Video carousel -->
<!-- <section class="hero is-small">
<div class="hero-body">
<div class="container">
<h2 class="title is-3">Another Carousel</h2>
<div id="results-carousel" class="carousel results-carousel">
<div class="item item-video1">
<video poster="" id="video1" autoplay controls muted loop height="100%">
Your video file here
<source src="static/videos/carousel1.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video2">
<video poster="" id="video2" autoplay controls muted loop height="100%">
Your video file here
<source src="static/videos/carousel2.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video3">
<video poster="" id="video3" autoplay controls muted loop height="100%">\
Your video file here
<source src="static/videos/carousel3.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section> -->
<!-- End video carousel -->
<!-- Paper poster -->
<!-- <section class="hero is-small is-light">
<div class="hero-body">
<div class="container">
<h2 class="title">Poster</h2>
<iframe src="static/pdfs/sample.pdf" width="100%" height="550">
</iframe>
</div>
</div>
</section> -->
<!--End paper poster -->
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@INPROCEEDINGS {jdec2024han,
author = {W.K. Han and S. Im and J. Kim and K.H. Jin},
booktitle = {2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
title = {{JDEC}: JPEG Decoding via Enhanced Continuous Cosine Coefficients},
year = {2024},
}</code></pre>
</div>
</section>
<!--End BibTex citation -->
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
You are free to borrow the of this website, we just ask that you link back to this page in the footer. <br> This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>