-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
383 lines (337 loc) · 17.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import numpy as np
import torch
from torch.utils.data import DataLoader,WeightedRandomSampler
from torchvision import transforms
import network,loss,get_weight,utils
import lr_schedule, data_list
import copy,random
import tqdm
import os
import argparse
def image_train(resize_size=256, crop_size=224):
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.RandomCrop(crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def image_test(resize_size=256, crop_size=224):
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def image_classification(loader, model):
start_test = True
with torch.no_grad():
iter_test = iter(loader["test"])
for i in tqdm.trange(len(loader['test'])):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
_, outputs = model(inputs)
if start_test:
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
return accuracy
def get_features(loader, model):
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for i in tqdm.trange(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
feats, outputs = model(inputs)
if start_test:
all_output = outputs.float().cpu()
all_feature = feats.float().cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_feature = torch.cat((all_feature,feats.float().cpu()),0)
all_label = torch.cat((all_label, labels.float()), 0)
return all_feature, all_label, all_output
def train(args):
## prepare data
train_bs, test_bs = args.batch_size, args.batch_size * 2
if args.sampler == "subset_sampler":
source_base_dataset_train = data_list.ImageList(open(args.s_dset_path).readlines(),
transform=image_train(), root=args.root)
source_base_dataset_test = data_list.ImageList(open(args.s_dset_path).readlines(),
transform=image_test(), root=args.root)
dsets = {}
dsets["source"] = data_list.ImageList(open(args.s_dset_path).readlines(), transform=image_train(),return_index=True,root=args.root)
dsets["target"] = data_list.ImageList(open(args.t_dset_path).readlines(), transform=image_train(),return_index=True,root=args.root)
dsets["test"] = data_list.ImageList(open(args.t_dset_path).readlines(), transform=image_test(),root=args.root)
dsets["source_val"] = data_list.ImageList(open(args.s_dset_path).readlines(), transform=image_test(),root=args.root)
dset_loaders = {}
dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, shuffle=True,
num_workers=args.worker,
drop_last=True)
dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, shuffle=True, num_workers=args.worker,
drop_last=True)
dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, shuffle=False, num_workers=args.worker)
dset_loaders["source_val"] = DataLoader(dsets["source_val"], batch_size=test_bs, shuffle=False, num_workers=args.worker)
##prepare model
if "ResNet" in args.net:
params = {"resnet_name": args.net, "bottleneck_dim": args.bottleneck_dim,
'class_num': args.class_num,"radius":args.radius,"normalize_classifier":args.normalize_classifier}
base_network = network.ResNetFc(**params)
base_network = base_network.cuda()
advnet=network.AdversarialNetwork(base_network.output_num(),1024).cuda()
parameter_list = base_network.get_parameters()
## set optimizer
optimizer_config = {"type": torch.optim.SGD, "optim_params":
{'lr': args.lr, "momentum": 0.9, "weight_decay": 5e-4, "nesterov": True},
"lr_type": "inv", "lr_param": {"lr": args.lr, "gamma": args.gamma, "power": 0.75}
}
optimizer = optimizer_config["type"](parameter_list, **(optimizer_config["optim_params"]))
param_lr = []
for param_group in optimizer.param_groups:
param_lr.append(param_group["lr"])
schedule_param = optimizer_config["lr_param"]
lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]
##training
best_acc = 0
for i in range(args.max_iterations + 1):
base_network.train(True)
optimizer = lr_scheduler(optimizer, i, **schedule_param)
##test
if (i % args.test_interval == 0 and i > 0) or (i == args.max_iterations):
base_network.train(False)
temp_acc = image_classification(dset_loaders, base_network)
if best_acc < temp_acc:
best_acc = temp_acc
best_model = base_network.state_dict()
log_str = "\n {} iter: {:05d}, precision: {:.5f}, best_acc: {:.5f} \n".format(args.name,i, temp_acc, best_acc)
args.out_file.write(log_str + "\n")
args.out_file.flush()
print(log_str)
##update weight, loader
if args.sampler == "weighted_sampler":
if args.dset == "domainnet" :
args.seed = None
if i % args.weight_update_interval == 0 and i>0:
base_network.train(False)
all_source_features, _, _ = get_features(dset_loaders["source_val"], base_network)
all_target_features, _, _ = get_features(dset_loaders["test"], base_network)
weights = get_weight.get_weight(all_source_features, all_target_features, args.rho0, args.seed,
args.max_iter_discriminator, args.automatical_adjust, args.up,
args.low, i,args.multiprocess,args.c)
weights = torch.Tensor(weights[:])
dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs,
sampler=WeightedRandomSampler(weights, num_samples=len(weights),
replacement=True),
num_workers=args.worker, drop_last=True)
if args.sampler == "subset_sampler":
if i % args.weight_update_interval == 0 and i > 5000:
indexes = np.random.permutation(len(source_base_dataset_test))[:train_bs * 2000]
dsets["source"] = data_list.SubDataset(source_base_dataset_train, indexes)
dsets["source_val"] = data_list.SubDataset(source_base_dataset_test, indexes)
dset_loaders["source_val"] = DataLoader(dsets["source_val"], batch_size=test_bs, shuffle=False,
num_workers=args.worker)
base_network.train(False)
all_source_features, _, _ = get_features(dset_loaders["source_val"], base_network)
all_target_features, _, _ = get_features(dset_loaders["test"], base_network)
weights = get_weight.get_weight(all_source_features, all_target_features)
weights = torch.Tensor(weights[:])
dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs,
sampler=WeightedRandomSampler(weights, num_samples=len(weights),
replacement=True),
num_workers=args.worker, drop_last=True)
if args.sampler == "uniform_sampler":
early_start = False
if args.dset == "office" and i==200:
early_start = True
if i == 0:
weights = torch.ones(len(dsets["source_val"]))
elif i % args.weight_update_interval == 0 or early_start:
base_network.train(False)
all_source_features, _, _ = get_features(dset_loaders["source_val"], base_network)
all_target_features, _, _ = get_features(dset_loaders["test"], base_network)
weights = get_weight.get_weight(all_source_features, all_target_features, args.rho0, args.seed,
args.max_iter_discriminator, args.automatical_adjust, args.up,
args.low, i,args.multiprocess,args.c)
weights = torch.Tensor(weights[:])
if i % len(dset_loaders["source"]) == 0:
iter_source = iter(dset_loaders["source"])
if i % len(dset_loaders["target"]) == 0:
iter_target = iter(dset_loaders["target"])
##forward
inputs_source, labels_source,ids_source = iter_source.next()
inputs_target, _,_ = iter_target.next()
inputs_source, inputs_target, labels_source = inputs_source.cuda(), inputs_target.cuda(), labels_source.cuda()
_, outputs_source = base_network(inputs_source)
features_target, _ = base_network(inputs_target)
##source (smoothed) cross entropy loss
if args.label_smooth:
if args.sampler == "weighted_sampler" or args.sampler == "subset_sampler":
src_loss = loss.weighted_smooth_cross_entropy(outputs_source, labels_source)
else:
weight = weights[ids_source].cuda()
src_loss = loss.weighted_smooth_cross_entropy(outputs_source, labels_source, weight)
else:
if args.sampler == "weighted_sampler" or args.sampler == "subset_sampler":
src_loss = loss.weighted_cross_entropy(outputs_source,labels_source)
else:
weight = weights[ids_source].cuda()
src_loss = loss.weighted_cross_entropy(outputs_source, labels_source, weight)
##target entropy loss
fc = copy.deepcopy(base_network.fc)
for param in fc.parameters():
param.requires_grad = False
softmax_tar_out = torch.nn.Softmax(dim=1)(fc(features_target))
tar_loss = torch.mean(loss.entropy(softmax_tar_out))
total_loss = src_loss
if i>=args.start_adapt:
total_loss = total_loss + args.ent_weight*tar_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
print("step:{:d} \t src_loss:{:.4f} \t tar_loss:{:.4f}"
"".format(i,src_loss.item(),tar_loss.item()))
torch.save(best_model, os.path.join(args.output_dir, "best_model.pt"))
log_str = 'Acc: ' + str(np.round(best_acc * 100, 2)) + '\n'
args.out_file.write(log_str)
args.out_file.flush()
print(log_str)
return best_acc
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Adversarial Reweighting for Partial Domain Adaptation')
parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
parser.add_argument('--s', type=int, default=0, help="source")
parser.add_argument('--t', type=int, default=1, help="target")
parser.add_argument('--output', type=str, default='run')
parser.add_argument('--seed', type=int, default=2020, help="random seed")
parser.add_argument('--max_iterations', type=int, default=5000, help="max iterations")
parser.add_argument('--batch_size', type=int, default=36, help="batch_size")
parser.add_argument('--worker', type=int, default=4, help="number of workers")
parser.add_argument('--net', type=str, default='ResNet50', choices=["ResNet50"])
parser.add_argument('--dset', type=str, default='imagenet_caltech',
choices=["office", "office_home", "imagenet_caltech", "domainnet","visda-2017"])
parser.add_argument('--test_interval', type=int, default=500, help="interval of two continuous test phase")
parser.add_argument('--lr', type=float, default=0.001, help="learning rate")
parser.add_argument('--ent_weight', type=float, default=0.1)
parser.add_argument('--radius', type=float, default=20.0)
parser.add_argument('--root', type=str, default='data',help="root to data")
parser.add_argument('--label_smooth', action='store_true', default=False, help="whether to smooth label")
args = parser.parse_args()
args.start_adapt = 0
args.normalize_classifier = True
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
args.rho0 = 5.0
args.up = 5.0
args.low = -5.0
args.c = 1.2
args.automatical_adjust = True
args.max_iter_discriminator = 6000
args.multiprocess = False
args.gamma = 0.001
if args.dset == 'domainnet':
names = ['clipart', 'painting', 'real', 'sketch']
k = 40
args.class_num = 126
args.max_iterations = 20000
args.test_interval = 1000
args.weight_update_interval = 1000
args.lr = 1e-3
args.radius = 20.0
args.start_adapt = 1000
args.sampler = "weighted_sampler"
if args.dset == 'office_home':
names = ['Art', 'Clipart', 'Product', 'RealWorld']
k = 25
args.class_num = 65
args.max_iterations = 5000
args.test_interval = 500
args.weight_update_interval = 500
args.max_iter_discriminator = 3000
args.lr = 1e-3
args.radius = 10.0
args.sampler = "uniform_sampler"
if args.dset == 'office':
names = ['amazon', 'dslr', 'webcam']
k = 10
args.class_num = 31
args.max_iterations = 3000
args.test_interval = 200
args.weight_update_interval = 500
args.max_iter_discriminator = 3000
if args.s == 0 and args.t == 1:
args.lr = 3e-4
args.start_adapt = 1000
args.rho0 = 10.0
if args.s == 0 and args.t == 2:
args.lr = 3e-4
args.start_adapt = 1000
args.rho0 = 3.0
args.radius = 8.5
args.sampler = "uniform_sampler"
if args.dset == 'imagenet_caltech':
names = ['imagenet', 'caltech']
k = 84
if args.s == 1:
args.class_num = 256
args.max_iterations = 40000
args.test_interval = 1000
args.weight_update_interval = 1000
args.lr = 7e-4
args.sampler = "weighted_sampler"
else:
args.class_num = 1000
args.max_iterations = 100000
args.test_interval = 1000
args.weight_update_interval = 2000
args.lr = 1e-3
args.sampler = "subset_sampler"
args.gamma = 0.0004
args.radius = 20.0
if args.dset == 'visda-2017':
names = ['train', 'validation']
k = 6
args.class_num = 12
args.max_iterations = 40000
args.test_interval = 1000
if args.s == 0:
args.weight_update_interval = 3000
args.lr = 1e-3
args.sampler = "weighted_sampler"
args.normalize_classifier = False
else:
args.weight_update_interval = 1000
args.lr = 1e-4
args.sampler = "uniform_sampler"
args.low = 1.0
args.multiprocess = True
args.radius = 5.0
args.bottleneck_dim = utils.recommended_bottleneck_dim(args.class_num)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
data_folder = './data/'
args.s_dset_path = data_folder + args.dset + '/' + names[args.s] + '.txt'
args.t_dset_path = data_folder + args.dset + '/' + names[args.t] + '_' + str(k) + '.txt'
args.name = names[args.s][0].upper() + names[args.t][0].upper()
args.output_dir = os.path.join('ckp/', args.dset, args.name, args.output)
if not os.path.exists(args.output_dir):
os.system('mkdir -p ' + args.output_dir)
args.out_file = open(os.path.join(args.output_dir, "log.txt"), "w")
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
args.out_file.write(str(args) + '\n')
args.out_file.flush()
train(args)