-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor.py
108 lines (93 loc) · 4.13 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import time
import envpool
import torch
import numpy as np
from utils import Q_Net, LinearSchedule
def actor_process(opt, shared_data):
actor = Actor(opt, shared_data)
actor.run()
class Actor:
def __init__(self, opt, shared_data):
# Basic information init
self.shared_data = shared_data
self.device = torch.device(opt.A_dvc)
self.max_train_steps = opt.max_train_steps
self.train_envs = opt.train_envs
self.action_dim = opt.action_dim
self.explore_steps = opt.explore_steps
self.time_feedback = opt.time_feedback
# vectorized e-greedy exploration mechanism
self.explore_frac_scheduler = LinearSchedule(opt.decay_step, opt.init_explore_frac, opt.end_explore_frac)
self.p = torch.zeros(opt.train_envs)
self.min_eps = opt.min_eps
# build actor and envs
# 参考Apex训练时的最大步长为50e3 frame, envpool中最大步长按step算的,不是frame,所以还要除4
self.envs = envpool.make_gym(opt.ExpEnvName, num_envs=opt.train_envs, seed=opt.seed,
max_episode_steps=int(50e3 / 4), episodic_life=True, reward_clip=True)
self.actor_net = Q_Net(opt.action_dim, opt.fc_width).to(self.device)
# self.download_model()
self.step_counter = 0 #local step counter in Actor
def run(self):
ct = np.ones(self.train_envs,dtype=np.bool_) # consistent(Check AutoReset in Envpool)
s, info = self.envs.reset()
mean_t, c = 0, 0
while True:
if self.step_counter > self.max_train_steps: break #结束Actor进程
random_phase = self.step_counter < self.explore_steps
if random_phase:
a = np.random.randint(0, self.action_dim, self.train_envs)
else:
t0 = time.time()
a = self.select_action(s)
s_next, r, dw, tr, info = self.envs.step(a)
self.shared_data.add(s, a, r, dw, ct) #注意ct是用上一次step的, 即buffer.add()要在ct = ~(dw + tr)前
ct = ~(dw + tr) # 如果当前s_next是”截断状态“或”终止状态“,则s_next与s_next_next是不consistent的,训练时要丢掉
s = s_next
#update gloabel steps
self.step_counter += self.train_envs
self.shared_data.set_total_steps(self.step_counter)
if not random_phase:
# download model parameters from shared_data.net_param
if self.step_counter % (5*self.train_envs) == 0: # don't ask shared_data too frequently
if self.shared_data.get_should_download():
self.shared_data.set_should_download(False)
self.download_model()
# fresh vectorized e-greedy noise
if self.step_counter % (10*self.train_envs) == 0:
self.fresh_explore_prob(self.step_counter-self.explore_steps)
if self.step_counter % (100 * self.train_envs) == 0:
print('(Actor) Tstep: {}k'.format(int(self.step_counter/1e3)) )
if self.time_feedback:
# 计算
c += 1
current_t = time.time() - t0 # 本次step消耗的时间
mean_t = mean_t + (current_t - mean_t) / c # 增量法求得的平均step时间
# 存储
self.shared_data.set_t(mean_t, 0) # actor时间放在第0位
# 比较、等待
t = self.shared_data.get_t()
if t[0]<t[1]: #actor耗时少
hold_time = t[1]-t[0]
if hold_time > 1: hold_time = 1 #防止过长等待
time.sleep(hold_time) #actor等待
def fresh_explore_prob(self, steps):
#fresh vectorized e-greedy noise
explore_frac = self.explore_frac_scheduler.value(steps) # 1.0 -> 0.032 in decay_step
i = int(explore_frac * self.train_envs) # 128 -> 4
explore = torch.arange(i) / (1.25 * i) # [0,0.8]
self.p *= 0
self.p[self.train_envs - i:] = explore
self.p += self.min_eps
def select_action(self, s):
'''For envpool, the input is [n,4,84,84], npdarray'''
with torch.no_grad():
s = torch.from_numpy(s).to(self.device) # [b,s_dim]
a = self.actor_net(s).argmax(dim=-1).cpu() # [b]
replace = torch.rand(self.train_envs) < self.p # [b]
rd_a = torch.randint(0, self.action_dim, (self.train_envs,))
a[replace] = rd_a[replace]
return a.numpy()
def download_model(self):
self.actor_net.load_state_dict(self.shared_data.get_net_param())
for actor_param in self.actor_net.parameters():
actor_param.requires_grad = False