-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathintegrate.py
65 lines (54 loc) · 2.32 KB
/
integrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""---------- Batchaya Noumeme Yacynte Divan ----------"""
"""---------- Bachelor's in Mechatronics Thesis ----------"""
"""---------- Development of Monocular Visual Odometry Algorithm, WS 23/24 ----------"""
"""---------- Technische Hochshule Wuerzburg-Schweinfurt ---------"""
"""---------- Centre for Robotics ---------"""
import numpy as np
from scipy.integrate import cumtrapz
import matplotlib.pyplot as plt
# Sample data for time and acceleration
# t = np.linspace(0, 10, 100) # Time array from 0 to 10 seconds
# a = np.sin(t) + 1 # Example acceleration data (can be replaced with your dataset)
def integrate(a,t,gt_path_3d):
# Numerical integration to calculate velocity
vx = cumtrapz(a[:,3] + a[:,4], t, initial=0) #+ a[:,0]
vy = cumtrapz(a[:,4] - a[:,4], t, initial=0) #+ a[:,1]
vz = cumtrapz(-a[:,5] - a[:,4], t, initial=0) #+ a[:,2]
# return dx, dy, dz
# Numerical integration to calculate displacement
dx = cumtrapz(vx, t, initial=0)
dy = cumtrapz(vy, t, initial=0)
dz = cumtrapz(vz, t, initial=0)
vo = np.zeros((len(dx),3))
vo[:,0] = dx #(dx+dy)#/10
vo[:,1] = dy
vo[:,2] = dz #-dy-dz
d_vo = []
d_gt = []
for i in range(1,len(vo)):
d_vo.append(np.linalg.norm(vo[i]-vo[i-1]))
d_gt.append(np.linalg.norm(gt_path_3d[i,:3,3]-gt_path_3d[i-1,:3,3]))
print(np.sum(d_vo), np.sum(d_gt))
return d_vo
# Plotting acceleration, velocity, and displacement
plt.figure(figsize=(10, 6))
plt.plot(t[1:], d_vo, label='Displacement vo (m)')
plt.plot(t[1:], d_gt, label='Displacement gt (m)')
# plt.plot(t, -dz-dy, label='Displacement Z (m)')
plt.xlabel('Time (s)')
plt.ylabel('Value')
plt.title('Acceleration, Velocity, and Displacement')
plt.legend()
plt.grid(True)
ax = plt.figure().add_subplot(projection='3d')
ax.plot(dx+dy+gt_path_3d[0,2,3],dy-dy+gt_path_3d[0,0,3],-dz-dy+gt_path_3d[0,1,3],label='Visual Odometry')
ax.plot(gt_path_3d[:,2,3],gt_path_3d[:,0,3],gt_path_3d[:,1,3],label='Ground Truth')
# ax.plot(gt_path_3d[:,2,3],gt_path_3d[:,0,3],gt_path_3d[:,1,3],label='Visual Odometry')
# ax.plot(gt_path_3d[:,2,3],gt_path_3d[:,0,3],gt_path_3d[:,1,3],label='Ground Truth')
plt.grid()
ax.legend()
ax.set_xlabel("z")
ax.set_ylabel("x")
ax.set_zlabel("y")
plt.show()
return dx, dy, dz