-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAOJ0010.cpp
110 lines (91 loc) · 2.84 KB
/
AOJ0010.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include "bits/stdc++.h"
using namespace std;
using VS = vector<string>; using LL = long long;
using VI = vector<int>; using VVI = vector<VI>;
using PII = pair<int, int>; using PLL = pair<LL, LL>;
using VL = vector<LL>; using VVL = vector<VL>;
#define ALL(a) begin((a)),end((a))
#define RALL(a) (a).rbegin(), (a).rend()
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define SZ(a) int((a).size())
#define SORT(c) sort(ALL((c)))
#define RSORT(c) sort(RALL((c)))
#define UNIQ(c) (c).erase(unique(ALL((c))), end((c)))
#define FOR(i, s, e) for (int(i) = (s); (i) < (e); (i)++)
#define FORR(i, s, e) for (int(i) = (s); (i) > (e); (i)--)
#define debug(x) cerr << #x << ": " << x << endl
const int INF = 1e9; const LL LINF = 1e16;
const LL MOD = 1000000007; const double PI = acos(-1.0);
int DX[8] = { 0, 0, 1, -1, 1, 1, -1, -1 }; int DY[8] = { 1, -1, 0, 0, 1, -1, 1, -1 };
/* ----- 2017/10/03 Problem: AOJ 0010 / Link: http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0010&lang=jp ----- */
/* ------問題------
二次元座標中の三角形の3点が与えられる。この三角形の外接円の中心座標と半径は。
-----問題ここまで----- */
/* -----解説等-----
高校数学。
3点を通る円は
x^2+y^2+a[0]x+a[1]y+a[2]=0
これは連立方程式として解けるので解く。
式変形をすれば中心、半径もわかるのでOK
----解説ここまで---- */
LL N;
LL ans = 0LL;
template<typename T>
vector<T> gauss_jordan(const vector<vector<T>>& A, const vector<T>& b) {
const double EPS = 1e-8;
int n = (int)A.size();
vector<vector<T>> B(n, vector<T>(n + 1));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
B[i][j] = A[i][j];
}
for (int i = 0; i < n; i++) {
B[i][n] = b[i];
}
for (int i = 0; i < n; i++) {
int pivot = i;
for (int j = i; j < n; j++) {
if (abs(B[i][j]) > abs(B[pivot][i]))pivot = j;
}
swap(B[i], B[pivot]);
if (abs(B[i][i]) < EPS) { //解がないか一意でない
//cout << "error be." << endl;
return vector<T>();
}
for (int j = i + 1; j <= n; j++)B[i][j] /= B[i][i];
for (int j = 0; j < n; j++) {
if (i != j) {
for (int k = i + 1; k <= n; k++)
B[j][k] -= B[j][i] * B[i][k];
}
}
}
vector<T> x(n);//解
for (int i = 0; i < n; i++) {
x[i] = B[i][n];
}
return x;//veci.
}
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
cin >> N;
double x[3], y[3];
FOR(i, 0, N) {
vector<vector<double>>A(3, vector<double>(3));
vector<double>B(3);
FOR(j, 0, 3) {
cin >> x[j] >> y[j];
A[j][0] = x[j];
A[j][1] = y[j];
A[j][2] = 1;
B[j] = -(x[j] * x[j] + y[j] * y[j]);
}
vector<double>X=gauss_jordan(A,B);
cout << fixed << setprecision(3);
cout << -X[0]/2<<" "<<-X[1]/2<<" "<< sqrt((X[0]*X[0]+X[1]*X[1])/4.0-X[2]) << endl;
}
return 0;
}