-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTraits_CAUSE.r
124 lines (93 loc) · 4.74 KB
/
Traits_CAUSE.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# devtools::install_version("mixsqp", version = "0.1-97", repos = "http://cran.us.r-project.org")
# devtools::install_version("ashr", version = "2.2-32", repos = "http://cran.us.r-project.org")
# devtools::install_github("jean997/cause@v1.0.0")
# for the latest version, use devtools::install_github("jean997/cause@v1.2.0")
library(readr)
library(cause)
ts1 = c("AD", "ASD", "Daytime_Sleepiness", "Height_UKB", "Intelligence", "RA",
"T2D", "Alcohol", "BMI", "Depression", "IBD", "MDD", "SCZ", "Angina",
"CAD", "HBP", "Income", "NEB", "Smoking", "Urate", "Anorexia",
"CD", "Height_GIANT", "Insomnia", "Neuroticism", "SWB")
ts2 = ts1
Threshold=1e-03
start = proc.time()
for( exposure in ts1 ){
for( outcome in ts2 ){
if(exposure==outcome) next
# read GWAS summary statistics
cat(exposure,"~",outcome,"\n")
X1 = suppressMessages(readr::read_delim(paste0("./GWAS_26and5_formatted/", exposure), delim="\t",
escape_double = FALSE, trim_ws = TRUE, progress = F))
X2 = suppressMessages(readr::read_delim(paste0("./GWAS_26and5_formatted/", outcome), delim="\t",
escape_double = FALSE, trim_ws = TRUE, progress = F))
X1$b = X1$Z/sqrt(X1$N)
X2$b = X2$Z/sqrt(X2$N)
X1$se = 1/sqrt(X1$N)
X2$se = 1/sqrt(X2$N)
X <- try(gwas_merge(X1, X2,
snp_name_cols = c("SNP", "SNP"),
beta_hat_cols = c("b", "b"),
se_cols = c("se", "se"),
A1_cols = c("A1", "A1"),
A2_cols = c("A2", "A2")))
if(inherits(X , 'try-error')) next
d0 = X1[, c("SNP", "P")]
colnames(d0) = c("snp", "pval.exp")
X0 = merge(X, d0, by="snp")
# clump
clumped = MRAPSS::clump(X0,
IV.Threshold = 1e-03,
SNP_col = "snp",
pval_col = "pval.exp",
clump_kb = 1000,
clump_r2 = 0.1,
bfile = "/import/home/share/xhu/database/1KG/all_1000G_EUR_Phase3",
plink_bin = "/import/home/maxhu/plink/plink")
varlist <- with(X, sample(snp, size=min(nrow(X), 1000000), replace=FALSE))
params <- try(est_cause_params(X, varlist))
if(inherits(params , 'try-error')) next
# cause
if(!is.null(clumped)){
top_ldl_pruned_vars =intersect(as.character(X$snp), as.character(subset(clumped, pval.exp <= Threshold)$snp))
cause_res <- try(cause(X=X, variants = top_ldl_pruned_vars , param_ests = params, force=TRUE))
if(inherits( cause_res , 'try-error')) next
res_elpd <- data.frame(exposure,
outcome,
Threshold,
length(top_ldl_pruned_vars),
cause_res$elpd)
res.cause.est = summary(cause_res, ci_size=0.95)
res = data.frame(exposure, outcome,
Threshold,length(top_ldl_pruned_vars),
matrix(c(res.cause.est$quants[[2]][,1],
res.cause.est$quants[[2]][,2],
res.cause.est$quants[[2]][,3]), nrow=1))
write.table(res, file="Traits_CAUSE_est", append=T,
col.names = F, row.names = F,
quote = F)
write.table(res_elpd, file="Traits_CAUSE_elpd", append=T,
col.names = F, row.names = F,
quote = F)
rm(top_ldl_pruned_vars)
rm(res)
rm(res_elpd)
rm(res.cause.est)
rm(cause_res)
}
}
}
print(proc.time()-start)
cause_elpd = unique(read.table("Traits_CAUSE_elpd", header = F))
cause_est = unique(read.table("Traits_CAUSE_est", header = F))
colnames(cause_elpd) = c("exposure","outcome","Threshold","nsnp","model1","model2","delta_elpd", "se_delta_elpd", "Z")
colnames(cause_est) = c("exposure","outcome","Threshold","nsnp", "beta.hat","b_l","b_u","eta","eta_l","eta_u","q","q_l","q_u")
cause_elpd = unique(subset(cause_elpd, model1=="sharing"&model2=="causal"))
cause_elpd$pval = pnorm(cause_elpd$Z)
cause_est = unique(cause_est[, c("exposure","outcome","Threshold","nsnp", "beta.hat","b_l","b_u")])
cause_est$se = (cause_est$b_u - cause_est$b_l)/2/1.96
cause_res = unique(merge(unique(cause_elpd[, c("exposure","outcome","pval")]),
cause_est[, c("exposure","outcome","Threshold","nsnp", "beta.hat","se")],
by=c("exposure","outcome")))
cause_res$Method = "CAUSE"
write.table(cause_res, file="Traits_CAUSE.MRres", append=F, col.names = T, row.names = F, quote = F)
head(cause_res)