-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathgenerate.py
309 lines (258 loc) · 11.5 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import sys, os, random, time
from copy import deepcopy
sys.path.append('./model')
from dataloader import REMIFullSongTransformerDataset
from model.musemorphose import MuseMorphose
from utils import pickle_load, numpy_to_tensor, tensor_to_numpy
from remi2midi import remi2midi
import torch
import yaml
import numpy as np
from scipy.stats import entropy
config_path = sys.argv[1]
config = yaml.load(open(config_path, 'r'), Loader=yaml.FullLoader)
device = config['training']['device']
data_dir = config['data']['data_dir']
vocab_path = config['data']['vocab_path']
data_split = 'pickles/test_pieces.pkl'
ckpt_path = sys.argv[2]
out_dir = sys.argv[3]
n_pieces = int(sys.argv[4])
n_samples_per_piece = int(sys.argv[5])
###########################################
# little helpers
###########################################
def word2event(word_seq, idx2event):
return [ idx2event[w] for w in word_seq ]
def get_beat_idx(event):
return int(event.split('_')[-1])
###########################################
# sampling utilities
###########################################
def temperatured_softmax(logits, temperature):
try:
probs = np.exp(logits / temperature) / np.sum(np.exp(logits / temperature))
assert np.count_nonzero(np.isnan(probs)) == 0
except:
print ('overflow detected, use 128-bit')
logits = logits.astype(np.float128)
probs = np.exp(logits / temperature) / np.sum(np.exp(logits / temperature))
probs = probs.astype(float)
return probs
def nucleus(probs, p):
probs /= sum(probs)
sorted_probs = np.sort(probs)[::-1]
sorted_index = np.argsort(probs)[::-1]
cusum_sorted_probs = np.cumsum(sorted_probs)
after_threshold = cusum_sorted_probs > p
if sum(after_threshold) > 0:
last_index = np.where(after_threshold)[0][1]
candi_index = sorted_index[:last_index]
else:
candi_index = sorted_index[:3] # just assign a value
candi_probs = np.array([probs[i] for i in candi_index], dtype=np.float64)
candi_probs /= sum(candi_probs)
word = np.random.choice(candi_index, size=1, p=candi_probs)[0]
return word
########################################
# generation
########################################
def get_latent_embedding_fast(model, piece_data, use_sampling=False, sampling_var=0.):
# reshape
batch_inp = piece_data['enc_input'].permute(1, 0).long().to(device)
batch_padding_mask = piece_data['enc_padding_mask'].bool().to(device)
# get latent conditioning vectors
with torch.no_grad():
piece_latents = model.get_sampled_latent(
batch_inp, padding_mask=batch_padding_mask,
use_sampling=use_sampling, sampling_var=sampling_var
)
return piece_latents
def generate_on_latent_ctrl_vanilla_truncate(
model, latents, rfreq_cls, polyph_cls, event2idx, idx2event,
max_events=12800, primer=None,
max_input_len=1280, truncate_len=512,
nucleus_p=0.9, temperature=1.2
):
latent_placeholder = torch.zeros(max_events, 1, latents.size(-1)).to(device)
rfreq_placeholder = torch.zeros(max_events, 1, dtype=int).to(device)
polyph_placeholder = torch.zeros(max_events, 1, dtype=int).to(device)
print ('[info] rhythm cls: {} | polyph_cls: {}'.format(rfreq_cls, polyph_cls))
if primer is None:
generated = [event2idx['Bar_None']]
else:
generated = [event2idx[e] for e in primer]
latent_placeholder[:len(generated), 0, :] = latents[0].squeeze(0)
rfreq_placeholder[:len(generated), 0] = rfreq_cls[0]
polyph_placeholder[:len(generated), 0] = polyph_cls[0]
target_bars, generated_bars = latents.size(0), 0
steps = 0
time_st = time.time()
cur_pos = 0
failed_cnt = 0
cur_input_len = len(generated)
generated_final = deepcopy(generated)
entropies = []
while generated_bars < target_bars:
if len(generated) == 1:
dec_input = numpy_to_tensor([generated], device=device).long()
else:
dec_input = numpy_to_tensor([generated], device=device).permute(1, 0).long()
latent_placeholder[len(generated)-1, 0, :] = latents[ generated_bars ]
rfreq_placeholder[len(generated)-1, 0] = rfreq_cls[ generated_bars ]
polyph_placeholder[len(generated)-1, 0] = polyph_cls[ generated_bars ]
dec_seg_emb = latent_placeholder[:len(generated), :]
dec_rfreq_cls = rfreq_placeholder[:len(generated), :]
dec_polyph_cls = polyph_placeholder[:len(generated), :]
# sampling
with torch.no_grad():
logits = model.generate(dec_input, dec_seg_emb, dec_rfreq_cls, dec_polyph_cls)
logits = tensor_to_numpy(logits[0])
probs = temperatured_softmax(logits, temperature)
word = nucleus(probs, nucleus_p)
word_event = idx2event[word]
if 'Beat' in word_event:
event_pos = get_beat_idx(word_event)
if not event_pos >= cur_pos:
failed_cnt += 1
print ('[info] position not increasing, failed cnt:', failed_cnt)
if failed_cnt >= 128:
print ('[FATAL] model stuck, exiting ...')
return generated
continue
else:
cur_pos = event_pos
failed_cnt = 0
if 'Bar' in word_event:
generated_bars += 1
cur_pos = 0
print ('[info] generated {} bars, #events = {}'.format(generated_bars, len(generated_final)))
if word_event == 'PAD_None':
continue
if len(generated) > max_events or (word_event == 'EOS_None' and generated_bars == target_bars - 1):
generated_bars += 1
generated.append(event2idx['Bar_None'])
print ('[info] gotten eos')
break
generated.append(word)
generated_final.append(word)
entropies.append(entropy(probs))
cur_input_len += 1
steps += 1
assert cur_input_len == len(generated)
if cur_input_len == max_input_len:
generated = generated[-truncate_len:]
latent_placeholder[:len(generated)-1, 0, :] = latent_placeholder[cur_input_len-truncate_len:cur_input_len-1, 0, :]
rfreq_placeholder[:len(generated)-1, 0] = rfreq_placeholder[cur_input_len-truncate_len:cur_input_len-1, 0]
polyph_placeholder[:len(generated)-1, 0] = polyph_placeholder[cur_input_len-truncate_len:cur_input_len-1, 0]
print ('[info] reset context length: cur_len: {}, accumulated_len: {}, truncate_range: {} ~ {}'.format(
cur_input_len, len(generated_final), cur_input_len-truncate_len, cur_input_len-1
))
cur_input_len = len(generated)
assert generated_bars == target_bars
print ('-- generated events:', len(generated_final))
print ('-- time elapsed: {:.2f} secs'.format(time.time() - time_st))
return generated_final[:-1], time.time() - time_st, np.array(entropies)
########################################
# change attribute classes
########################################
def random_shift_attr_cls(n_samples, upper=4, lower=-3):
return np.random.randint(lower, upper, (n_samples,))
if __name__ == "__main__":
dset = REMIFullSongTransformerDataset(
data_dir, vocab_path,
do_augment=False,
model_enc_seqlen=config['data']['enc_seqlen'],
model_dec_seqlen=config['generate']['dec_seqlen'],
model_max_bars=config['generate']['max_bars'],
pieces=pickle_load(data_split),
pad_to_same=False
)
pieces = random.sample(range(len(dset)), n_pieces)
print ('[sampled pieces]', pieces)
mconf = config['model']
model = MuseMorphose(
mconf['enc_n_layer'], mconf['enc_n_head'], mconf['enc_d_model'], mconf['enc_d_ff'],
mconf['dec_n_layer'], mconf['dec_n_head'], mconf['dec_d_model'], mconf['dec_d_ff'],
mconf['d_latent'], mconf['d_embed'], dset.vocab_size,
d_polyph_emb=mconf['d_polyph_emb'], d_rfreq_emb=mconf['d_rfreq_emb'],
cond_mode=mconf['cond_mode']
).to(device)
model.eval()
model.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
if not os.path.exists(out_dir):
os.makedirs(out_dir)
times = []
for p in pieces:
# fetch test sample
p_data = dset[p]
p_id = p_data['piece_id']
p_bar_id = p_data['st_bar_id']
p_data['enc_input'] = p_data['enc_input'][ : p_data['enc_n_bars'] ]
p_data['enc_padding_mask'] = p_data['enc_padding_mask'][ : p_data['enc_n_bars'] ]
orig_p_cls_str = ''.join(str(c) for c in p_data['polyph_cls_bar'])
orig_r_cls_str = ''.join(str(c) for c in p_data['rhymfreq_cls_bar'])
orig_song = p_data['dec_input'].tolist()[:p_data['length']]
orig_song = word2event(orig_song, dset.idx2event)
orig_out_file = os.path.join(out_dir, 'id{}_bar{}_orig'.format(
p, p_bar_id
))
print ('[info] writing to ...', orig_out_file)
# output reference song's MIDI
_, orig_tempo = remi2midi(orig_song, orig_out_file + '.mid', return_first_tempo=True, enforce_tempo=False)
# save metadata of reference song (events & attr classes)
print (*orig_song, sep='\n', file=open(orig_out_file + '.txt', 'a'))
np.save(orig_out_file + '-POLYCLS.npy', p_data['polyph_cls_bar'])
np.save(orig_out_file + '-RHYMCLS.npy', p_data['rhymfreq_cls_bar'])
for k in p_data.keys():
if not torch.is_tensor(p_data[k]):
p_data[k] = numpy_to_tensor(p_data[k], device=device)
else:
p_data[k] = p_data[k].to(device)
p_latents = get_latent_embedding_fast(
model, p_data,
use_sampling=config['generate']['use_latent_sampling'],
sampling_var=config['generate']['latent_sampling_var']
)
p_cls_diff = random_shift_attr_cls(n_samples_per_piece)
r_cls_diff = random_shift_attr_cls(n_samples_per_piece)
piece_entropies = []
for samp in range(n_samples_per_piece):
p_polyph_cls = (p_data['polyph_cls_bar'] + p_cls_diff[samp]).clamp(0, 7).long()
p_rfreq_cls = (p_data['rhymfreq_cls_bar'] + r_cls_diff[samp]).clamp(0, 7).long()
print ('[info] piece: {}, bar: {}'.format(p_id, p_bar_id))
out_file = os.path.join(out_dir, 'id{}_bar{}_sample{:02d}_poly{}_rhym{}'.format(
p, p_bar_id, samp + 1,
'+{}'.format(p_cls_diff[samp]) if p_cls_diff[samp] >= 0 else p_cls_diff[samp],
'+{}'.format(r_cls_diff[samp]) if r_cls_diff[samp] >= 0 else r_cls_diff[samp]
))
print ('[info] writing to ...', out_file)
if os.path.exists(out_file + '.txt'):
print ('[info] file exists, skipping ...')
continue
# print (p_polyph_cls, p_rfreq_cls)
# generate
song, t_sec, entropies = generate_on_latent_ctrl_vanilla_truncate(
model, p_latents, p_rfreq_cls, p_polyph_cls, dset.event2idx, dset.idx2event,
max_input_len=config['generate']['max_input_dec_seqlen'],
truncate_len=min(512, config['generate']['max_input_dec_seqlen'] - 32),
nucleus_p=config['generate']['nucleus_p'],
temperature=config['generate']['temperature'],
)
times.append(t_sec)
song = word2event(song, dset.idx2event)
print (*song, sep='\n', file=open(out_file + '.txt', 'a'))
remi2midi(song, out_file + '.mid', enforce_tempo=True, enforce_tempo_val=orig_tempo)
# save metadata of the generation
np.save(out_file + '-POLYCLS.npy', tensor_to_numpy(p_polyph_cls))
np.save(out_file + '-RHYMCLS.npy', tensor_to_numpy(p_rfreq_cls))
print ('[info] piece entropy: {:.4f} (+/- {:.4f})'.format(
entropies.mean(), entropies.std()
))
piece_entropies.append(entropies.mean())
print ('[time stats] {} songs, generation time: {:.2f} secs (+/- {:.2f})'.format(
n_pieces * n_samples_per_piece, np.mean(times), np.std(times)
))
print ('[entropy] {:.4f} (+/- {:.4f})'.format(
np.mean(piece_entropies), np.std(piece_entropies)
))