-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_models.py
208 lines (175 loc) · 6.84 KB
/
train_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
import argparse
import os, time
import numpy as np
import keras.backend as K
import tensorflow as tf
from datasets import get_data
from models import get_model
from losses import cross_entropy
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
from pgd_attack import LinfPGDAttack, TestLinfPGDAttack
from logger import Logger
from tqdm import tqdm
import time
# prepare folders
folders = ['data', 'model', 'log']
for folder in folders:
path = os.path.join('./', folder)
if not os.path.exists(path):
os.makedirs(path)
def advs_train(dataset='cifar-10', loss_name='ce', epochs=120, dynamic_epoch=100,
batch_size=128, fosc_max=0.5, epsilon=0.031):
"""
Adversarial training with PGD attack.
"""
print('DynamicAdvsTrain - Data set: %s, loss: %s, epochs: %s, dynamic_epoch: %s, batch: %s, epsilon: %s' %
(dataset, loss_name, epochs, dynamic_epoch, batch_size, epsilon))
X_train, Y_train, X_test, Y_test = get_data(dataset, clip_min=0., clip_max=1., onehot=True)
n_images = X_train.shape[0]
image_shape = X_train.shape[1:]
n_class = Y_train.shape[1]
print("n_images:", n_images, "n_class:", n_class, "image_shape:", image_shape)
model = get_model(dataset, input_shape=image_shape, n_class=n_class, softmax=True)
# model.summary()
# create loss
if loss_name == 'ce':
loss = cross_entropy
else:
print("New loss function should be defined first.")
return
optimizer = SGD(lr=0.01, decay=1e-4, momentum=0.9)
model.compile(
loss=loss,
optimizer=optimizer,
metrics=['accuracy']
)
# data augmentation
if dataset in ['mnist']:
datagen = ImageDataGenerator()
elif dataset in ['cifar-10']:
datagen = ImageDataGenerator(
rotation_range=10,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
else:
datagen = ImageDataGenerator(
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
datagen.fit(X_train)
# pgd attack for training
attack = LinfPGDAttack(model,
epsilon=epsilon,
eps_iter=epsilon/4,
nb_iter=10,
random_start=True,
loss_func='xent',
clip_min=np.min(X_train),
clip_max=np.max(X_train))
# initialize logger
mylogger = Logger(K.get_session(), model, X_train, Y_train, X_test, Y_test,
dataset, loss_name, epochs, suffix='%s' % epsilon)
batch_iterator = datagen.flow(X_train, Y_train, batch_size=batch_size)
start_time = time.time()
for ep in range(epochs):
# learning rate decay
if (ep + 1) == 60:
lr = float(K.get_value(model.optimizer.lr))
K.set_value(model.optimizer.lr, lr/10.0)
if (ep + 1) == 100:
lr = float(K.get_value(model.optimizer.lr))
K.set_value(model.optimizer.lr, lr/10.0)
lr = float(K.get_value(model.optimizer.lr))
# a simple linear decreasing of fosc
fosc = fosc_max - fosc_max * (ep*1.0/dynamic_epoch)
fosc = np.max([fosc, 0.0])
steps_per_epoch = int(X_train.shape[0]/batch_size)
pbar = tqdm(range(steps_per_epoch))
for it in pbar:
batch_x, batch_y = batch_iterator.next()
batch_advs, fosc_batch = attack.perturb(K.get_session(), batch_x, batch_y, batch_size, ep, fosc)
probs = model.predict(batch_advs)
loss_weight = np.max(- batch_y * np.log(probs + 1e-12), axis = 1)
if it == 0:
fosc_all = fosc_batch
else:
fosc_all = np.concatenate((fosc_all, fosc_batch), axis=0)
if ep == 0:
loss, acc = model.train_on_batch(batch_advs, batch_y)
else:
loss, acc = model.train_on_batch(batch_advs, batch_y, sample_weight = loss_weight)
pbar.set_postfix(acc='%.4f' % acc, loss='%.4f' % loss)
print('All time:', time.time() - start_time)
log_path = './log'
file_name = os.path.join(log_path, 'BatchSize_{}_Epoch_{}_fosc.npy'.format(batch_size, ep))
np.save(file_name, fosc_all)
val_loss, val_acc = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=0)
logs = {'acc': acc, 'loss': loss, 'val_acc': val_acc, 'val_loss': val_loss}
print("Epoch %s - loss: %.4f - acc: %.4f - val_loss: %.4f - val_acc: %.4f"
% (ep, loss, acc, val_loss, val_acc))
# save the log and model every epoch
mylogger.on_epoch_end(epoch=ep, logs=logs)
model.save_weights("model/advs_%s_%s_%s_%s.hdf5" % (dataset, loss_name, epsilon, ep))
def main(args):
"""
Train model with data augmentation: random padding+cropping and horizontal flip
:param args:
:return:
"""
advs_train(args.dataset, args.loss, args.epochs, args.dynamic_epoch,
args.batch_size, args.fosc_max, args.epsilon)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-d', '--dataset',
help="Dataset to use; either 'mnist', 'cifar-10'",
required=True, type=str
)
parser.add_argument(
'-l', '--loss',
help="loss name: 'ce'",
required=True, type=str
)
parser.add_argument(
'-e', '--epochs',
help="The number of epochs to train for.",
required=False, type=int
)
parser.add_argument(
'-t', '--dynamic_epoch',
help="The maximum control epoch for dynamic advs training.",
required=False, type=float
)
parser.add_argument(
'-b', '--batch_size',
help="The batch size to use for training.",
required=False, type=int
)
parser.add_argument(
'-p', '--epsilon',
help="The maximum perturbation.",
required=False, type=float
)
parser.add_argument(
'-fm', '--fosc_max',
help="The maximum perturbation.",
required=False, type=float
)
parser.set_defaults(epochs=120)
parser.set_defaults(dynamic_epoch=100)
parser.set_defaults(batch_size=128)
parser.set_defaults(fosc_max=0.5)
# pass in arguments from the command line
# args = parser.parse_args()
# main(args)
# set parameters
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # use the fisrt GPU.
args = parser.parse_args(['-d', 'cifar-10', '-l', 'ce', '-e', '120', '-t', '100',
'-b', '128', '-fm', '0.5', '-p', '0.031'])
main(args)
K.clear_session()