Skip to content

Latest commit

 

History

History
84 lines (83 loc) · 1.82 KB

README.md

File metadata and controls

84 lines (83 loc) · 1.82 KB

DigImpro

Simple library coded in TI Basic to help student with the course of Digital Image Processing.

Implemented functions

  • Conv2d(m, k)
  • conv1d(f, h)
  • bilinear(x,y,m,v)
  • nearestneighbor(x,y,m,v)
  • covariance_vec(x,y,b,v)
  • covariancemat(x,b,v)
  • erode(m,k)
  • dilation(m,k)
  • open(m,k)
  • close(m,k)
  • hitormiss(m,b)
  • white_top_hat(m,b,v)
  • black_top_hat(m,b,v)
  • dft(x)
  • idft(x)
  • dft_2d(m)
  • idft_2d(m)
  • bayes_osc(x1,x2,a)
  • morpho_grad_in(m,b)
  • morpho_grad_out(m,b)
  • morpho_grad(m,b)

Tested on

  • TI-nspire CX II-T CAS

Paramters of the functions

  • Conv2D(m,k)
    • m: matrix
    • k: kernel
  • Conv1D(f,h)
    • f: vector 1
    • k: vector 2
  • bilinear(x,y,m,v)
    • x: x coordinate
    • y: y coordinate
    • m: matrix
    • v: verbose mode
  • nearestneighbor(x,y,m)
    • x: x coordinate
    • y: y coordinate
    • m: matrix
  • covariance_vec(x,y,b,v)
    • x: vector x
    • y: vector y
    • b: bias (0 = no bias / N-1 | 1 = bias / N)
    • v: verbose mode
  • covariancemat(x,b,v)
    • x: matrix
    • b: bias (0 = no bias / N-1 | 1 = bias / N)
    • v: verbose mode
  • Morphological Transformation
    • erode(m,k)
    • dilation(m,k)
    • open(m,k)
    • close(m,k)
    • white_top_hat(m,b,v)
    • black_top_hat(m,b,v)
    • morpho_grad_in(m,b)
    • morpho_grad_out(m,b)
    • morpho_grad(m,b)
      • m: matrix
      • k-b: structucual matrix (put 1 where you need)
      • v: verbose mode
  • hitormiss(m,b,v)
    • m: matrix
    • b: structural element (must be 0,1, or infinite for dont care)
    • v: verbose mode
  • Fourier
    • dft(x)
    • idft(x)
    • dft_2d(m)
    • idft_2d(m)
      • x: vector line
      • m: matrix
  • Pattern Classification
    • bayes_osc(x1,x2,a,b) -> bayes Optimal statistical classifier
      • x1: classe1
      • x2: classe2
      • a: formula to use, page 926
      • b: bias

WARNING

in TI BASIC the index of the matrix start from 1, not from 0.