-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path1123.LowestCommonAncestorofDeepestLeaves.py
82 lines (71 loc) · 2.83 KB
/
1123.LowestCommonAncestorofDeepestLeaves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
'''
Given the root of a binary tree, return the lowest common
ancestor of its deepest leaves.
Recall that:
- The node of a binary tree is a leaf if and only if
it has no children
- The depth of the root of the tree is 0. if the depth
of a node is d, the depth of each of its children is
d + 1.
- The lowest common ancestor of a set S of nodes, is
the node A with the largest depth such that every
node in S is in the subtree with root A.
Note: This question is the same as 865:
https://leetcode.com/problems/smallest-subtree-with-all-the-deepest-nodes/
Example:
Input: root = [3,5,1,6,2,0,8,null,null,7,4]
Output: [2,7,4]
Explanation: We return the node with value 2, colored in
yellow in the diagram.
The nodes coloured in blue are the deepest
leaf-nodes of the tree.
Note that nodes 6, 0, and 8 are also leaf
nodes, but the depth of them is 2, but the
depth of nodes 7 and 4 is 3.
Example:
Input: root = [1]
Output: [1]
Explanation: The root is the deepest node in the tree,
and it's the lca of itself.
Example:
Input: root = [0,1,3,null,2]
Output: [2]
Explanation: The deepest leaf node in the tree is 2, the
lca of one node is itself.
Constraints:
- The number of nodes in the tree will be in the
range [1, 1000].
- 0 <= Node.val <= 1000
- The values of the nodes in the tree are unique.
'''
#Difficulty: Medium
#81 / 81 test cases passed.
#Runtime: 32 ms
#Memory Usage: 14.6 MB
#Runtime: 32 ms, faster than 99.89% of Python3 online submissions for Lowest Common Ancestor of Deepest Leaves.
#Memory Usage: 14.6 MB, less than 27.89% of Python3 online submissions for Lowest Common Ancestor of Deepest Leaves.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def lcaDeepestLeaves(self, root: TreeNode) -> TreeNode:
return self.dfs(root, 0)[0]
def dfs(self, root, depth=0):
if not root.left and not root.right:
return root, depth
if root.left and root.right:
leftNode, leftDepth = self.dfs(root.left, depth+1)
rightNode, rightDepth = self.dfs(root.right, depth+1)
if leftDepth > rightDepth:
return leftNode, leftDepth
elif leftDepth < rightDepth:
return rightNode, rightDepth
else:
return root, leftDepth
if root.left:
return self.dfs(root.left, depth+1)
if root.right:
return self.dfs(root.right, depth+1)