-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path1695.MaximumErasureValue.py
49 lines (42 loc) · 1.47 KB
/
1695.MaximumErasureValue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
'''
You are given an array of positive integers nums and want
to erase a subarray containing unique elements. The score
you get by erasing the subarray is equal to the sum of its
elements.
Return the maximum score you can get by erasing exactly
one subarray.
An array b is called to be a subarray of a if it forms a
contiguous subsequence of a, that is, if it is equal to
a[l],a[l+1],...,a[r] for some (l,r).
Example:
Input: nums = [4,2,4,5,6]
Output: 17
Explanation: The optimal subarray here is [2,4,5,6].
Example:
Input: nums = [5,2,1,2,5,2,1,2,5]
Output: 8
Explanation: The optimal subarray here is [5,2,1] or
[1,2,5].
Constraints:
- 1 <= nums.length <= 10^5
- 1 <= nums[i] <= 10^4
'''
#Difficulty: Medium
#62 / 62 test cases passed.
#Runtime: 2228 ms
#Memory Usage: 27.4 MB
#Runtime: 2228 ms, faster than 33.33% of Python3 online submissions for Maximum Erasure Value.
#Memory Usage: 27.4 MB, less than 33.33% of Python3 online submissions for Maximum Erasure Value.
class Solution:
def maximumUniqueSubarray(self, nums: List[int]) -> int:
i = 0
score = 0
indices = {}
length = len(nums)
for j in range(length):
if nums[j] not in indices or indices[nums[j]] < i:
score = max(score, sum(nums[i:j+1]))
else:
i = 1 + indices[nums[j]]
indices[nums[j]] = j
return score