-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path216.CombinationSumIII.py
47 lines (41 loc) · 1.39 KB
/
216.CombinationSumIII.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Find all possible combinations of k numbers that add up to a number n,
given that only numbers from 1 to 9 can be used and each combination should
be a unique set of numbers.
Note:
- All numbers will be positive integers.
- The solution set must not contain duplicate combinations.
Example:
Input: k = 3, n = 7
Output: [[1,2,4]]
Example:
Input: k = 3, n = 9
Output: [[1,2,6], [1,3,5], [2,3,4]]
"""
#Difficulty: Medium
#18 / 18 test cases passed.
#Runtime: 32 ms
#Memory Usage: 13.8 MB
#Runtime: 32 ms, faster than 68.72% of Python3 online submissions for Combination Sum III.
#Memory Usage: 13.8 MB, less than 62.64% of Python3 online submissions for Combination Sum III.
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
if k > n:
return
self.result = []
self.backtracking(k, n)
return self.result
def backtracking(self, k, n, start = 1, summ = 0, count = 0, nums = []):
if count > k:
return
if count == k and summ == n:
result = []
result.extend(nums)
self.result.append(result)
return
for num in range(start, 10):
if summ + num > n:
break
nums.append(num)
self.backtracking(k, n, num+1, summ+num, count+1, nums)
nums.pop()