-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
66 lines (55 loc) · 1.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#coding=utf-8
import torch
import torch.nn as nn
import sys
from tqdm import tqdm
from config import input_size, root, proposalN, channels
from utils.read_dataset import read_dataset
from utils.auto_laod_resume import auto_load_resume
from networks.model import MainNet
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
CUDA = torch.cuda.is_available()
DEVICE = torch.device("cuda" if CUDA else "cpu")
# dataset
set = 'CUB'
if set == 'CUB':
root = './datasets/CUB_200_2011' # dataset path
# model path
pth_path = "./models/cub_epoch144.pth"
num_classes = 200
elif set == 'Aircraft':
root = './datasets/FGVC-aircraft' # dataset path
# model path
pth_path = "./models/air_epoch146.pth"
num_classes = 100
batch_size = 10
#load dataset
_, testloader = read_dataset(input_size, batch_size, root, set)
# 定义模型
model = MainNet(proposalN=proposalN, num_classes=num_classes, channels=channels)
model = model.to(DEVICE)
criterion = nn.CrossEntropyLoss()
#加载checkpoint
if os.path.exists(pth_path):
epoch = auto_load_resume(model, pth_path, status='test')
else:
sys.exit('There is not a pth exist.')
print('Testing')
raw_correct = 0
object_correct = 0
model.eval()
with torch.no_grad():
for i, data in enumerate(tqdm(testloader)):
if set == 'CUB':
x, y, boxes, _ = data
else:
x, y = data
x = x.to(DEVICE)
y = y.to(DEVICE)
local_logits, local_imgs = model(x, epoch, i, 'test', DEVICE)[-2:]
# local
pred = local_logits.max(1, keepdim=True)[1]
object_correct += pred.eq(y.view_as(pred)).sum().item()
print('\nObject branch accuracy: {}/{} ({:.2f}%)\n'.format(
object_correct, len(testloader.dataset), 100. * object_correct / len(testloader.dataset)))