-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
97 lines (78 loc) · 2.81 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import logging
import os
import torch
import shutil
from torchvision import transforms
import numpy as np
import random
import cv2
def generate_smoothed_gt(gts):
epsilon = 0.001
new_gts = (1-epsilon)*gts+epsilon/2
return new_gts
class Logger():
def __init__(self, path="log.txt"):
self.logger = logging.getLogger('DGNet')
self.file_handler = logging.FileHandler(path, "w")
self.stdout_handler = logging.StreamHandler()
self.stdout_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
self.file_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
self.logger.addHandler(self.file_handler)
self.logger.addHandler(self.stdout_handler)
self.logger.setLevel(logging.INFO)
self.logger.propagate = False
def info(self, txt):
self.logger.info(txt)
def close(self):
self.file_handler.close()
self.stdout_handler.close()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0.0
self.avg = 0.0
self.sum = 0.0
self.count = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, path, filename="latest.pth"):
torch.save(state, os.path.join(path, filename))
def save_tensor_img(tenor_im, path):
im = tenor_im.cpu().clone()
im = im.squeeze(0)
tensor2pil = transforms.ToPILImage()
im = tensor2pil(im)
im.save(path)
def save_tensor_merge(tenor_im, tensor_mask, path, colormap='HOT'):
im = tenor_im.cpu().detach().clone()
im = im.squeeze(0).numpy()
im = ((im - np.min(im)) / (np.max(im) - np.min(im) + 1e-20)) * 255
im = np.array(im,np.uint8)
mask = tensor_mask.cpu().detach().clone()
mask = mask.squeeze(0).numpy()
mask = ((mask - np.min(mask)) / (np.max(mask) - np.min(mask) + 1e-20)) * 255
mask = np.clip(mask, 0, 255)
mask = np.array(mask, np.uint8)
if colormap == 'HOT':
mask = cv2.applyColorMap(mask[0,:,:], cv2.COLORMAP_HOT)
elif colormap == 'PINK':
mask = cv2.applyColorMap(mask[0,:,:], cv2.COLORMAP_PINK)
elif colormap == 'BONE':
mask = cv2.applyColorMap(mask[0,:,:], cv2.COLORMAP_BONE)
# exec('cv2.applyColorMap(mask[0,:,:], cv2.COLORMAP_' + colormap+')')
im = im.transpose((1, 2, 0))
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
mix = cv2.addWeighted(im, 0.3, mask, 0.7, 0)
cv2.imwrite(path, mix)
# 固定随机种子!
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True